collections: Make BinaryHeap panic safe in sift_up / sift_down

Use a struct called Hole that keeps track of an invalid location
in the vector and fills the hole on drop.

I include a run-pass test that the current BinaryHeap fails, and the new
one passes.

Fixes #25842
This commit is contained in:
Ulrik Sverdrup 2015-05-28 10:44:31 +02:00
parent 541fe5faf8
commit 5249cbb7fa
2 changed files with 196 additions and 25 deletions

View File

@ -153,7 +153,7 @@
use core::prelude::*;
use core::iter::{FromIterator};
use core::mem::{zeroed, replace, swap};
use core::mem::swap;
use core::ptr;
use slice;
@ -484,46 +484,42 @@ impl<T: Ord> BinaryHeap<T> {
// The implementations of sift_up and sift_down use unsafe blocks in
// order to move an element out of the vector (leaving behind a
// zeroed element), shift along the others and move it back into the
// vector over the junk element. This reduces the constant factor
// compared to using swaps, which involves twice as many moves.
fn sift_up(&mut self, start: usize, mut pos: usize) {
// hole), shift along the others and move the removed element back into the
// vector at the final location of the hole.
// The `Hole` type is used to represent this, and make sure
// the hole is filled back at the end of its scope, even on panic.
// Using a hole reduces the constant factor compared to using swaps,
// which involves twice as many moves.
fn sift_up(&mut self, start: usize, pos: usize) {
unsafe {
let new = replace(&mut self.data[pos], zeroed());
// Take out the value at `pos` and create a hole.
let mut hole = Hole::new(&mut self.data, pos);
while pos > start {
let parent = (pos - 1) >> 1;
if new <= self.data[parent] { break; }
let x = replace(&mut self.data[parent], zeroed());
ptr::write(&mut self.data[pos], x);
pos = parent;
while hole.pos() > start {
let parent = (hole.pos() - 1) / 2;
if hole.removed() <= hole.get(parent) { break }
hole.move_to(parent);
}
ptr::write(&mut self.data[pos], new);
}
}
fn sift_down_range(&mut self, mut pos: usize, end: usize) {
let start = pos;
unsafe {
let start = pos;
let new = replace(&mut self.data[pos], zeroed());
let mut hole = Hole::new(&mut self.data, pos);
let mut child = 2 * pos + 1;
while child < end {
let right = child + 1;
if right < end && !(self.data[child] > self.data[right]) {
if right < end && !(hole.get(child) > hole.get(right)) {
child = right;
}
let x = replace(&mut self.data[child], zeroed());
ptr::write(&mut self.data[pos], x);
pos = child;
child = 2 * pos + 1;
hole.move_to(child);
child = 2 * hole.pos() + 1;
}
ptr::write(&mut self.data[pos], new);
self.sift_up(start, pos);
pos = hole.pos;
}
self.sift_up(start, pos);
}
fn sift_down(&mut self, pos: usize) {
@ -554,6 +550,73 @@ impl<T: Ord> BinaryHeap<T> {
pub fn clear(&mut self) { self.drain(); }
}
/// Hole represents a hole in a slice i.e. an index without valid value
/// (because it was moved from or duplicated).
/// In drop, `Hole` will restore the slice by filling the hole
/// position with the value that was originally removed.
struct Hole<'a, T: 'a> {
data: &'a mut [T],
/// `elt` is always `Some` from new until drop.
elt: Option<T>,
pos: usize,
}
impl<'a, T> Hole<'a, T> {
/// Create a new Hole at index `pos`.
fn new(data: &'a mut [T], pos: usize) -> Self {
unsafe {
let elt = ptr::read(&data[pos]);
Hole {
data: data,
elt: Some(elt),
pos: pos,
}
}
}
#[inline(always)]
fn pos(&self) -> usize { self.pos }
/// Return a reference to the element removed
#[inline(always)]
fn removed(&self) -> &T {
self.elt.as_ref().unwrap()
}
/// Return a reference to the element at `index`.
///
/// Panics if the index is out of bounds.
///
/// Unsafe because index must not equal pos.
#[inline(always)]
unsafe fn get(&self, index: usize) -> &T {
debug_assert!(index != self.pos);
&self.data[index]
}
/// Move hole to new location
///
/// Unsafe because index must not equal pos.
#[inline(always)]
unsafe fn move_to(&mut self, index: usize) {
debug_assert!(index != self.pos);
let index_ptr: *const _ = &self.data[index];
let hole_ptr = &mut self.data[self.pos];
ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
self.pos = index;
}
}
impl<'a, T> Drop for Hole<'a, T> {
fn drop(&mut self) {
// fill the hole again
unsafe {
let pos = self.pos;
ptr::write(&mut self.data[pos], self.elt.take().unwrap());
}
}
}
/// `BinaryHeap` iterator.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter <'a, T: 'a> {

View File

@ -0,0 +1,108 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(std_misc, collections, catch_panic, rand)]
use std::__rand::{thread_rng, Rng};
use std::thread;
use std::collections::BinaryHeap;
use std::cmp;
use std::sync::Arc;
use std::sync::Mutex;
use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering};
static DROP_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT;
// old binaryheap failed this test
//
// Integrity means that all elements are present after a comparison panics,
// even if the order may not be correct.
//
// Destructors must be called exactly once per element.
fn test_integrity() {
#[derive(Eq, PartialEq, Ord, Clone, Debug)]
struct PanicOrd<T>(T, bool);
impl<T> Drop for PanicOrd<T> {
fn drop(&mut self) {
// update global drop count
DROP_COUNTER.fetch_add(1, Ordering::SeqCst);
}
}
impl<T: PartialOrd> PartialOrd for PanicOrd<T> {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
if self.1 || other.1 {
panic!("Panicking comparison");
}
self.0.partial_cmp(&other.0)
}
}
let mut rng = thread_rng();
const DATASZ: usize = 32;
const NTEST: usize = 10;
// don't use 0 in the data -- we want to catch the zeroed-out case.
let data = (1..DATASZ + 1).collect::<Vec<_>>();
// since it's a fuzzy test, run several tries.
for _ in 0..NTEST {
for i in 1..DATASZ + 1 {
DROP_COUNTER.store(0, Ordering::SeqCst);
let mut panic_ords: Vec<_> = data.iter()
.filter(|&&x| x != i)
.map(|&x| PanicOrd(x, false))
.collect();
let panic_item = PanicOrd(i, true);
// heapify the sane items
rng.shuffle(&mut panic_ords);
let heap = Arc::new(Mutex::new(BinaryHeap::from_vec(panic_ords)));
let inner_data;
{
let heap_ref = heap.clone();
// push the panicking item to the heap and catch the panic
let thread_result = thread::catch_panic(move || {
heap.lock().unwrap().push(panic_item);
});
assert!(thread_result.is_err());
// Assert no elements were dropped
let drops = DROP_COUNTER.load(Ordering::SeqCst);
//assert!(drops == 0, "Must not drop items. drops={}", drops);
{
// now fetch the binary heap's data vector
let mutex_guard = match heap_ref.lock() {
Ok(x) => x,
Err(poison) => poison.into_inner(),
};
inner_data = mutex_guard.clone().into_vec();
}
}
let drops = DROP_COUNTER.load(Ordering::SeqCst);
assert_eq!(drops, DATASZ);
let mut data_sorted = inner_data.into_iter().map(|p| p.0).collect::<Vec<_>>();
data_sorted.sort();
assert_eq!(data_sorted, data);
}
}
}
fn main() {
test_integrity();
}