Create ShallowResolver

Co-Authored-By: Gabriel Smith <yodaldevoid@users.noreply.github.com>
This commit is contained in:
varkor 2019-04-30 22:27:33 +01:00
parent 1369132afa
commit 541de81f8e
12 changed files with 128 additions and 108 deletions

View File

@ -684,7 +684,7 @@ impl<'cx, 'gcx, 'tcx> Canonicalizer<'cx, 'gcx, 'tcx> {
/// `ty_var`.
fn canonicalize_ty_var(&mut self, info: CanonicalVarInfo, ty_var: Ty<'tcx>) -> Ty<'tcx> {
let infcx = self.infcx.expect("encountered ty-var without infcx");
let bound_to = infcx.shallow_resolve_type(ty_var);
let bound_to = infcx.shallow_resolve(ty_var);
if bound_to != ty_var {
self.fold_ty(bound_to)
} else {

View File

@ -18,7 +18,7 @@ use crate::mir::interpret::ConstValue;
use crate::session::config::BorrowckMode;
use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine};
use crate::ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
use crate::ty::fold::TypeFoldable;
use crate::ty::fold::{TypeFolder, TypeFoldable};
use crate::ty::relate::RelateResult;
use crate::ty::subst::{Kind, InternalSubsts, SubstsRef};
use crate::ty::{self, GenericParamDefKind, Ty, TyCtxt, CtxtInterners, InferConst};
@ -919,17 +919,17 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
predicate: &ty::PolySubtypePredicate<'tcx>,
) -> Option<InferResult<'tcx, ()>> {
// Subtle: it's ok to skip the binder here and resolve because
// `shallow_resolve_type` just ignores anything that is not a type
// `shallow_resolve` just ignores anything that is not a type
// variable, and because type variable's can't (at present, at
// least) capture any of the things bound by this binder.
//
// Really, there is no *particular* reason to do this
// `shallow_resolve_type` here except as a
// `shallow_resolve` here except as a
// micro-optimization. Naturally I could not
// resist. -nmatsakis
let two_unbound_type_vars = {
let a = self.shallow_resolve_type(predicate.skip_binder().a);
let b = self.shallow_resolve_type(predicate.skip_binder().b);
let a = self.shallow_resolve(predicate.skip_binder().a);
let b = self.shallow_resolve(predicate.skip_binder().b);
a.is_ty_var() && b.is_ty_var()
};
@ -1274,46 +1274,6 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
self.resolve_type_vars_if_possible(t).to_string()
}
// We have this force-inlined variant of `shallow_resolve_type` for the one
// callsite that is extremely hot. All other callsites use the normal
// variant.
#[inline(always)]
pub fn inlined_shallow_resolve_type(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
match typ.sty {
ty::Infer(ty::TyVar(v)) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifyxing to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
self.type_variables
.borrow_mut()
.probe(v)
.known()
.map(|t| self.shallow_resolve_type(t))
.unwrap_or(typ)
}
ty::Infer(ty::IntVar(v)) => self.int_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.tcx))
.unwrap_or(typ),
ty::Infer(ty::FloatVar(v)) => self.float_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.tcx))
.unwrap_or(typ),
_ => typ,
}
}
/// If `TyVar(vid)` resolves to a type, return that type. Else, return the
/// universe index of `TyVar(vid)`.
pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
@ -1325,8 +1285,12 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
}
}
pub fn shallow_resolve_type(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
self.inlined_shallow_resolve_type(typ)
pub fn shallow_resolve<T>(&self, value: T) -> T
where
T: TypeFoldable<'tcx>,
{
let mut r = ShallowResolver::new(self);
value.fold_with(&mut r)
}
pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
@ -1391,24 +1355,6 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
}
}
pub fn shallow_resolve_const(
&self,
ct: &'tcx ty::Const<'tcx>
) -> &'tcx ty::Const<'tcx> {
match ct {
ty::Const { val: ConstValue::Infer(InferConst::Var(vid)), .. } => {
self.const_unification_table
.borrow_mut()
.probe_value(*vid)
.val
.known()
.map(|c| self.shallow_resolve_const(c))
.unwrap_or(ct)
}
_ => ct,
}
}
pub fn fully_resolve<T: TypeFoldable<'tcx>>(&self, value: &T) -> FixupResult<'tcx, T> {
/*!
* Attempts to resolve all type/region/const variables in
@ -1528,7 +1474,7 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
closure_substs: ty::ClosureSubsts<'tcx>,
) -> Option<ty::ClosureKind> {
let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self.tcx);
let closure_kind_ty = self.shallow_resolve_type(&closure_kind_ty);
let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
@ -1542,7 +1488,7 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
substs: ty::ClosureSubsts<'tcx>,
) -> ty::PolyFnSig<'tcx> {
let closure_sig_ty = substs.closure_sig_ty(def_id, self.tcx);
let closure_sig_ty = self.shallow_resolve_type(&closure_sig_ty);
let closure_sig_ty = self.shallow_resolve(closure_sig_ty);
closure_sig_ty.fn_sig(self.tcx)
}
@ -1598,6 +1544,82 @@ impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
}
}
pub struct ShallowResolver<'a, 'gcx: 'a + 'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
}
impl<'a, 'gcx, 'tcx> ShallowResolver<'a, 'gcx, 'tcx> {
#[inline(always)]
pub fn new(infcx: &'a InferCtxt<'a, 'gcx, 'tcx>) -> Self {
ShallowResolver { infcx }
}
// We have this force-inlined variant of `shallow_resolve` for the one
// callsite that is extremely hot. All other callsites use the normal
// variant.
#[inline(always)]
pub fn inlined_shallow_resolve(&mut self, typ: Ty<'tcx>) -> Ty<'tcx> {
match typ.sty {
ty::Infer(ty::TyVar(v)) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifyxing to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
self.infcx.type_variables
.borrow_mut()
.probe(v)
.known()
.map(|t| self.fold_ty(t))
.unwrap_or(typ)
}
ty::Infer(ty::IntVar(v)) => self.infcx.int_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx))
.unwrap_or(typ),
ty::Infer(ty::FloatVar(v)) => self.infcx.float_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.infcx.tcx))
.unwrap_or(typ),
_ => typ,
}
}
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ShallowResolver<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> {
self.infcx.tcx
}
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
self.inlined_shallow_resolve(ty)
}
fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
match ct {
ty::Const { val: ConstValue::Infer(InferConst::Var(vid)), .. } => {
self.infcx.const_unification_table
.borrow_mut()
.probe_value(*vid)
.val
.known()
.map(|c| self.fold_const(c))
.unwrap_or(ct)
}
_ => ct,
}
}
}
impl<'a, 'gcx, 'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span

View File

@ -538,10 +538,10 @@ where
}
fn tys(&mut self, a: Ty<'tcx>, mut b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
let a = self.infcx.shallow_resolve_type(a);
let a = self.infcx.shallow_resolve(a);
if !D::forbid_inference_vars() {
b = self.infcx.shallow_resolve_type(b);
b = self.infcx.shallow_resolve(b);
}
match (&a.sty, &b.sty) {

View File

@ -8,7 +8,7 @@ use crate::ty::fold::{TypeFolder, TypeVisitor};
/// The opportunistic type resolver can be used at any time. It simply replaces
/// type variables that have been unified with the things they have
/// been unified with (similar to `shallow_resolve_type`, but deep). This is
/// been unified with (similar to `shallow_resolve`, but deep). This is
/// useful for printing messages etc but also required at various
/// points for correctness.
pub struct OpportunisticTypeResolver<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
@ -31,7 +31,7 @@ impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for OpportunisticTypeResolver<'a, 'g
if !t.has_infer_types() {
t // micro-optimize -- if there is nothing in this type that this fold affects...
} else {
let t0 = self.infcx.shallow_resolve_type(t);
let t0 = self.infcx.shallow_resolve(t);
t0.super_fold_with(self)
}
}
@ -59,7 +59,7 @@ impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for OpportunisticTypeAndRegionResolv
if !t.needs_infer() {
t // micro-optimize -- if there is nothing in this type that this fold affects...
} else {
let t0 = self.infcx.shallow_resolve_type(t);
let t0 = self.infcx.shallow_resolve(t);
t0.super_fold_with(self)
}
}
@ -78,7 +78,7 @@ impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for OpportunisticTypeAndRegionResolv
if !ct.needs_infer() {
ct // micro-optimize -- if there is nothing in this const that this fold affects...
} else {
let c0 = self.infcx.shallow_resolve_const(ct);
let c0 = self.infcx.shallow_resolve(ct);
c0.super_fold_with(self)
}
}
@ -106,7 +106,7 @@ impl<'a, 'gcx, 'tcx> UnresolvedTypeFinder<'a, 'gcx, 'tcx> {
impl<'a, 'gcx, 'tcx> TypeVisitor<'tcx> for UnresolvedTypeFinder<'a, 'gcx, 'tcx> {
fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
let t = self.infcx.shallow_resolve_type(t);
let t = self.infcx.shallow_resolve(t);
if t.has_infer_types() {
if let ty::Infer(infer_ty) = t.sty {
// Since we called `shallow_resolve` above, this must
@ -175,7 +175,7 @@ impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for FullTypeResolver<'a, 'gcx, 'tcx>
// ^ we need to have the `keep_local` check to un-default
// defaulted tuples.
} else {
let t = self.infcx.shallow_resolve_type(t);
let t = self.infcx.shallow_resolve(t);
match t.sty {
ty::Infer(ty::TyVar(vid)) => {
self.err = Some(FixupError::UnresolvedTy(vid));
@ -216,7 +216,7 @@ impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for FullTypeResolver<'a, 'gcx, 'tcx>
// ^ we need to have the `keep_local` check to un-default
// defaulted tuples.
} else {
let c = self.infcx.shallow_resolve_const(c);
let c = self.infcx.shallow_resolve(c);
match c.val {
ConstValue::Infer(InferConst::Var(vid)) => {
self.err = Some(FixupError::UnresolvedConst(vid));

View File

@ -1,4 +1,4 @@
use crate::infer::InferCtxt;
use crate::infer::{InferCtxt, ShallowResolver};
use crate::mir::interpret::{GlobalId, ErrorHandled};
use crate::ty::{self, Ty, TypeFoldable, ToPolyTraitRef};
use crate::ty::error::ExpectedFound;
@ -255,9 +255,9 @@ impl<'a, 'b, 'gcx, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'b, 'gcx,
// doing more work yet
if !pending_obligation.stalled_on.is_empty() {
if pending_obligation.stalled_on.iter().all(|&ty| {
// Use the force-inlined variant of shallow_resolve_type() because this code is hot.
let resolved_ty = self.selcx.infcx().inlined_shallow_resolve_type(&ty);
resolved_ty == ty // nothing changed here
// Use the force-inlined variant of shallow_resolve() because this code is hot.
let resolved = ShallowResolver::new(self.selcx.infcx()).inlined_shallow_resolve(ty);
resolved == ty // nothing changed here
}) {
debug!("process_predicate: pending obligation {:?} still stalled on {:?}",
self.selcx.infcx()

View File

@ -1229,7 +1229,7 @@ fn confirm_object_candidate<'cx, 'gcx, 'tcx>(
-> Progress<'tcx>
{
let self_ty = obligation_trait_ref.self_ty();
let object_ty = selcx.infcx().shallow_resolve_type(self_ty);
let object_ty = selcx.infcx().shallow_resolve(self_ty);
debug!("confirm_object_candidate(object_ty={:?})",
object_ty);
let data = match object_ty.sty {
@ -1346,7 +1346,7 @@ fn confirm_fn_pointer_candidate<'cx, 'gcx, 'tcx>(
fn_pointer_vtable: VtableFnPointerData<'tcx, PredicateObligation<'tcx>>)
-> Progress<'tcx>
{
let fn_type = selcx.infcx().shallow_resolve_type(fn_pointer_vtable.fn_ty);
let fn_type = selcx.infcx().shallow_resolve(fn_pointer_vtable.fn_ty);
let sig = fn_type.fn_sig(selcx.tcx());
let Normalized {
value: sig,
@ -1371,7 +1371,7 @@ fn confirm_closure_candidate<'cx, 'gcx, 'tcx>(
let tcx = selcx.tcx();
let infcx = selcx.infcx();
let closure_sig_ty = vtable.substs.closure_sig_ty(vtable.closure_def_id, tcx);
let closure_sig = infcx.shallow_resolve_type(&closure_sig_ty).fn_sig(tcx);
let closure_sig = infcx.shallow_resolve(closure_sig_ty).fn_sig(tcx);
let Normalized {
value: closure_sig,
obligations

View File

@ -2403,7 +2403,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// NOTE: binder moved to (*)
let self_ty = self.infcx
.shallow_resolve_type(obligation.predicate.skip_binder().self_ty());
.shallow_resolve(obligation.predicate.skip_binder().self_ty());
match self_ty.sty {
ty::Infer(ty::IntVar(_))
@ -2467,7 +2467,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
) -> BuiltinImplConditions<'tcx> {
// NOTE: binder moved to (*)
let self_ty = self.infcx
.shallow_resolve_type(obligation.predicate.skip_binder().self_ty());
.shallow_resolve(obligation.predicate.skip_binder().self_ty());
use self::BuiltinImplConditions::{Ambiguous, None, Where};
@ -2866,7 +2866,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
);
let types = obligation.predicate.map_bound(|inner| {
let self_ty = self.infcx.shallow_resolve_type(inner.self_ty());
let self_ty = self.infcx.shallow_resolve(inner.self_ty());
self.constituent_types_for_ty(self_ty)
});
self.vtable_auto_impl(obligation, trait_def_id, types)
@ -2990,7 +2990,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// from the object. Have to try to make a broken test case that
// results.
let self_ty = self.infcx
.shallow_resolve_type(*obligation.self_ty().skip_binder());
.shallow_resolve(*obligation.self_ty().skip_binder());
let poly_trait_ref = match self_ty.sty {
ty::Dynamic(ref data, ..) =>
data.principal().unwrap_or_else(|| {
@ -3045,7 +3045,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// OK to skip binder; it is reintroduced below
let self_ty = self.infcx
.shallow_resolve_type(*obligation.self_ty().skip_binder());
.shallow_resolve(*obligation.self_ty().skip_binder());
let sig = self_ty.fn_sig(self.tcx());
let trait_ref = self.tcx()
.closure_trait_ref_and_return_type(
@ -3124,8 +3124,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// OK to skip binder because the substs on generator types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = self.infcx
.shallow_resolve_type(obligation.self_ty().skip_binder());
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
let (generator_def_id, substs) = match self_ty.sty {
ty::Generator(id, substs, _) => (id, substs),
_ => bug!("closure candidate for non-closure {:?}", obligation),
@ -3182,8 +3181,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// OK to skip binder because the substs on closure types never
// touch bound regions, they just capture the in-scope
// type/region parameters
let self_ty = self.infcx
.shallow_resolve_type(obligation.self_ty().skip_binder());
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
let (closure_def_id, substs) = match self_ty.sty {
ty::Closure(id, substs) => (id, substs),
_ => bug!("closure candidate for non-closure {:?}", obligation),
@ -3278,14 +3276,14 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
// assemble_candidates_for_unsizing should ensure there are no late bound
// regions here. See the comment there for more details.
let source = self.infcx
.shallow_resolve_type(obligation.self_ty().no_bound_vars().unwrap());
.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
let target = obligation
.predicate
.skip_binder()
.trait_ref
.substs
.type_at(1);
let target = self.infcx.shallow_resolve_type(target);
let target = self.infcx.shallow_resolve(target);
debug!(
"confirm_builtin_unsize_candidate(source={:?}, target={:?})",

View File

@ -406,7 +406,7 @@ impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
// moving. (Goal is that an "inductive hypothesis"
// is satisfied to ensure termination.)
ty::Infer(_) => {
let ty = self.infcx.shallow_resolve_type(ty);
let ty = self.infcx.shallow_resolve(ty);
if let ty::Infer(_) = ty.sty { // not yet resolved...
if ty == ty0 { // ...this is the type we started from! no progress.
return false;

View File

@ -204,7 +204,7 @@ impl TypeRelation<'cx, 'gcx, 'tcx> for AnswerSubstitutor<'cx, 'gcx, 'tcx> {
}
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
let b = self.infcx.shallow_resolve_type(b);
let b = self.infcx.shallow_resolve(b);
debug!("AnswerSubstitutor::tys(a = {:?}, b = {:?})", a, b);
if let &ty::Bound(debruijn, bound_ty) = &a.sty {

View File

@ -350,7 +350,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
}
PatKind::Ref(ref inner, mutbl) => {
let expected = self.shallow_resolve_type(expected);
let expected = self.shallow_resolve(expected);
if self.check_dereferencable(pat.span, expected, &inner) {
// `demand::subtype` would be good enough, but using
// `eqtype` turns out to be equally general. See (*)
@ -519,7 +519,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
pub fn check_dereferencable(&self, span: Span, expected: Ty<'tcx>, inner: &hir::Pat) -> bool {
if let PatKind::Binding(..) = inner.node {
if let Some(mt) = self.shallow_resolve_type(expected).builtin_deref(true) {
if let Some(mt) = self.shallow_resolve(expected).builtin_deref(true) {
if let ty::Dynamic(..) = mt.ty.sty {
// This is "x = SomeTrait" being reduced from
// "let &x = &SomeTrait" or "let box x = Box<SomeTrait>", an error.

View File

@ -154,7 +154,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
}
fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
let a = self.shallow_resolve_type(a);
let a = self.shallow_resolve(a);
debug!("Coerce.tys({:?} => {:?})", a, b);
// Just ignore error types.
@ -170,8 +170,8 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
// let _: Option<?T> = Some({ return; });
//
// here, we would coerce from `!` to `?T`.
let b = self.shallow_resolve_type(b);
return if self.shallow_resolve_type(b).is_ty_var() {
let b = self.shallow_resolve(b);
return if self.shallow_resolve(b).is_ty_var() {
// micro-optimization: no need for this if `b` is
// already resolved in some way.
let diverging_ty = self.next_diverging_ty_var(
@ -659,7 +659,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
//! into a closure or a `proc`.
//!
let b = self.shallow_resolve_type(b);
let b = self.shallow_resolve(b);
debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
self.coerce_from_safe_fn(a, fn_ty_a, b,
@ -673,7 +673,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
//! Attempts to coerce from the type of a Rust function item
//! into a closure or a `proc`.
let b = self.shallow_resolve_type(b);
let b = self.shallow_resolve(b);
debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
match b.sty {
@ -719,7 +719,7 @@ impl<'f, 'gcx, 'tcx> Coerce<'f, 'gcx, 'tcx> {
//! into a function pointer.
//!
let b = self.shallow_resolve_type(b);
let b = self.shallow_resolve(b);
let hir_id_a = self.tcx.hir().as_local_hir_id(def_id_a).unwrap();
match b.sty {
@ -1128,7 +1128,7 @@ impl<'gcx, 'tcx, 'exprs, E> CoerceMany<'gcx, 'tcx, 'exprs, E>
// compatibility (hopefully that is true) by helping us
// uncover never types better.
if expression_ty.is_ty_var() {
expression_ty = fcx.infcx.shallow_resolve_type(expression_ty);
expression_ty = fcx.infcx.shallow_resolve(expression_ty);
}
// If we see any error types, just propagate that error

View File

@ -281,7 +281,7 @@ impl<'a, 'gcx, 'tcx> Expectation<'tcx> {
fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'gcx, 'tcx>) -> Expectation<'tcx> {
match *self {
ExpectHasType(ety) => {
let ety = fcx.shallow_resolve_type(ety);
let ety = fcx.shallow_resolve(ety);
if !ety.is_ty_var() {
ExpectHasType(ety)
} else {
@ -2792,7 +2792,7 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
trait_ref: ty::PolyTraitRef<'tcx>,
expected_vid: ty::TyVid,
) -> bool {
let self_ty = self.shallow_resolve_type(trait_ref.self_ty());
let self_ty = self.shallow_resolve(trait_ref.self_ty());
debug!(
"self_type_matches_expected_vid(trait_ref={:?}, self_ty={:?}, expected_vid={:?})",
trait_ref, self_ty, expected_vid