generalize the traversal part of validation to a ValueVisitor

This commit is contained in:
Ralf Jung 2018-10-31 16:46:33 +01:00
parent 0117b42f66
commit 5b5e076b47
6 changed files with 425 additions and 306 deletions

View File

@ -535,14 +535,14 @@ fn validate_const<'a, 'tcx>(
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
let cid = key.value;
let ecx = mk_eval_cx(tcx, cid.instance, key.param_env).unwrap();
let mut ecx = mk_eval_cx(tcx, cid.instance, key.param_env).unwrap();
let val = (|| {
let op = ecx.const_to_op(constant)?;
let mut ref_tracking = RefTracking::new(op);
while let Some((op, mut path)) = ref_tracking.todo.pop() {
while let Some((op, path)) = ref_tracking.todo.pop() {
ecx.validate_operand(
op,
&mut path,
path,
Some(&mut ref_tracking),
/* const_mode */ true,
)?;

View File

@ -521,7 +521,7 @@ impl<'a, 'mir, 'tcx: 'mir, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tc
// return place is always a local and then this cannot happen.
self.validate_operand(
self.place_to_op(return_place)?,
&mut vec![],
vec![],
None,
/*const_mode*/false,
)?;

View File

@ -23,6 +23,7 @@ mod terminator;
mod traits;
mod validity;
mod intrinsics;
mod visitor;
pub use rustc::mir::interpret::*; // have all the `interpret` symbols in one place: here
@ -38,4 +39,6 @@ pub use self::machine::{Machine, AllocMap, MayLeak};
pub use self::operand::{ScalarMaybeUndef, Immediate, ImmTy, Operand, OpTy};
pub use self::visitor::ValueVisitor;
pub use self::validity::RefTracking;

View File

@ -489,6 +489,8 @@ where
/// Get the place of a field inside the place, and also the field's type.
/// Just a convenience function, but used quite a bit.
/// This is the only projection that might have a side-effect: We cannot project
/// into the field of a local `ScalarPair`, we have to first allocate it.
pub fn place_field(
&mut self,
base: PlaceTy<'tcx, M::PointerTag>,
@ -501,7 +503,7 @@ where
}
pub fn place_downcast(
&mut self,
&self,
base: PlaceTy<'tcx, M::PointerTag>,
variant: usize,
) -> EvalResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
@ -643,7 +645,7 @@ where
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(self.place_to_op(dest)?, &mut vec![], None, /*const_mode*/false)?;
self.validate_operand(self.place_to_op(dest)?, vec![], None, /*const_mode*/false)?;
}
Ok(())
@ -765,7 +767,7 @@ where
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(self.place_to_op(dest)?, &mut vec![], None, /*const_mode*/false)?;
self.validate_operand(self.place_to_op(dest)?, vec![], None, /*const_mode*/false)?;
}
Ok(())
@ -843,7 +845,7 @@ where
if M::enforce_validity(self) {
// Data got changed, better make sure it matches the type!
self.validate_operand(dest.into(), &mut vec![], None, /*const_mode*/false)?;
self.validate_operand(dest.into(), vec![], None, /*const_mode*/false)?;
}
Ok(())

View File

@ -8,24 +8,24 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::fmt::Write;
use std::fmt::{self, Write};
use std::hash::Hash;
use syntax_pos::symbol::Symbol;
use rustc::ty::layout::{self, Size, Align, TyLayout, LayoutOf};
use rustc::ty;
use rustc::ty::{self, TyCtxt};
use rustc_data_structures::fx::FxHashSet;
use rustc::mir::interpret::{
Scalar, AllocType, EvalResult, EvalErrorKind
};
use super::{
ImmTy, OpTy, MPlaceTy, Machine, EvalContext, ScalarMaybeUndef
OpTy, MPlaceTy, Machine, EvalContext, ScalarMaybeUndef, ValueVisitor
};
macro_rules! validation_failure {
($what:expr, $where:expr, $details:expr) => {{
let where_ = path_format($where);
let where_ = path_format(&$where);
let where_ = if where_.is_empty() {
String::new()
} else {
@ -37,7 +37,7 @@ macro_rules! validation_failure {
)))
}};
($what:expr, $where:expr) => {{
let where_ = path_format($where);
let where_ = path_format(&$where);
let where_ = if where_.is_empty() {
String::new()
} else {
@ -129,6 +129,43 @@ fn path_format(path: &Vec<PathElem>) -> String {
out
}
fn aggregate_field_path_elem<'a, 'tcx>(
layout: TyLayout<'tcx>,
field: usize,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
) -> PathElem {
match layout.ty.sty {
// generators and closures.
ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
if let Some(upvar) = tcx.optimized_mir(def_id).upvar_decls.get(field) {
PathElem::ClosureVar(upvar.debug_name)
} else {
// Sometimes the index is beyond the number of freevars (seen
// for a generator).
PathElem::ClosureVar(Symbol::intern(&field.to_string()))
}
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
let variant = match layout.variants {
layout::Variants::Single { index } => &def.variants[index],
_ => bug!("aggregate_field_path_elem: got enum but not in a specific variant"),
};
PathElem::Field(variant.fields[field].ident.name)
}
// other ADTs
ty::Adt(def, _) => PathElem::Field(def.non_enum_variant().fields[field].ident.name),
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
}
fn scalar_format<Tag>(value: ScalarMaybeUndef<Tag>) -> String {
match value {
ScalarMaybeUndef::Undef =>
@ -140,37 +177,92 @@ fn scalar_format<Tag>(value: ScalarMaybeUndef<Tag>) -> String {
}
}
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
/// Make sure that `value` is valid for `ty`, *assuming* `ty` is a primitive type.
fn validate_primitive_type(
&self,
value: ImmTy<'tcx, M::PointerTag>,
path: &Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<'tcx, M::PointerTag>>,
const_mode: bool,
) -> EvalResult<'tcx> {
struct ValidityVisitor<'rt, 'tcx, Tag> {
op: OpTy<'tcx, Tag>,
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking: Option<&'rt mut RefTracking<'tcx, Tag>>,
const_mode: bool,
}
impl<Tag: fmt::Debug> fmt::Debug for ValidityVisitor<'_, '_, Tag> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?} ({:?})", *self.op, self.op.layout.ty)
}
}
impl<'rt, 'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>
ValueVisitor<'a, 'mir, 'tcx, M> for ValidityVisitor<'rt, 'tcx, M::PointerTag>
{
#[inline(always)]
fn layout(&self) -> TyLayout<'tcx> {
self.op.layout
}
fn downcast_enum(&mut self, ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
let variant = match ectx.read_discriminant(self.op) {
Ok(res) => res.1,
Err(err) => return match err.kind {
EvalErrorKind::InvalidDiscriminant(val) =>
validation_failure!(
format!("invalid enum discriminant {}", val), self.path
),
_ =>
validation_failure!(
format!("non-integer enum discriminant"), self.path
),
}
};
// Put the variant projection onto the path, as a field
self.path.push(PathElem::Field(self.op.layout.ty
.ty_adt_def()
.unwrap()
.variants[variant].name));
// Proceed with this variant
self.op = ectx.operand_downcast(self.op, variant)?;
Ok(())
}
fn downcast_dyn_trait(&mut self, ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
// FIXME: Should we reflect this in `self.path`?
let dest = self.op.to_mem_place(); // immediate trait objects are not a thing
self.op = ectx.unpack_dyn_trait(dest)?.1.into();
Ok(())
}
fn visit_primitive(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
let value = try_validation!(ectx.read_immediate(self.op),
"uninitialized or unrepresentable data", self.path);
// Go over all the primitive types
let ty = value.layout.ty;
match ty.sty {
ty::Bool => {
let value = value.to_scalar_or_undef();
try_validation!(value.to_bool(),
scalar_format(value), path, "a boolean");
scalar_format(value), self.path, "a boolean");
},
ty::Char => {
let value = value.to_scalar_or_undef();
try_validation!(value.to_char(),
scalar_format(value), path, "a valid unicode codepoint");
scalar_format(value), self.path, "a valid unicode codepoint");
},
ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
// NOTE: Keep this in sync with the array optimization for int/float
// types below!
let size = value.layout.size;
let value = value.to_scalar_or_undef();
if const_mode {
if self.const_mode {
// Integers/floats in CTFE: Must be scalar bits, pointers are dangerous
try_validation!(value.to_bits(size),
scalar_format(value), path, "initialized plain bits");
scalar_format(value), self.path, "initialized plain bits");
} else {
// At run-time, for now, we accept *anything* for these types, including
// undef. We should fix that, but let's start low.
@ -180,33 +272,33 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// No undef allowed here. Eventually this should be consistent with
// the integer types.
let _ptr = try_validation!(value.to_scalar_ptr(),
"undefined address in pointer", path);
"undefined address in pointer", self.path);
let _meta = try_validation!(value.to_meta(),
"uninitialized data in fat pointer metadata", path);
"uninitialized data in fat pointer metadata", self.path);
}
_ if ty.is_box() || ty.is_region_ptr() => {
// Handle fat pointers.
// Check metadata early, for better diagnostics
let ptr = try_validation!(value.to_scalar_ptr(),
"undefined address in pointer", path);
"undefined address in pointer", self.path);
let meta = try_validation!(value.to_meta(),
"uninitialized data in fat pointer metadata", path);
let layout = self.layout_of(value.layout.ty.builtin_deref(true).unwrap().ty)?;
"uninitialized data in fat pointer metadata", self.path);
let layout = ectx.layout_of(value.layout.ty.builtin_deref(true).unwrap().ty)?;
if layout.is_unsized() {
let tail = self.tcx.struct_tail(layout.ty);
let tail = ectx.tcx.struct_tail(layout.ty);
match tail.sty {
ty::Dynamic(..) => {
let vtable = try_validation!(meta.unwrap().to_ptr(),
"non-pointer vtable in fat pointer", path);
try_validation!(self.read_drop_type_from_vtable(vtable),
"invalid drop fn in vtable", path);
try_validation!(self.read_size_and_align_from_vtable(vtable),
"invalid size or align in vtable", path);
"non-pointer vtable in fat pointer", self.path);
try_validation!(ectx.read_drop_type_from_vtable(vtable),
"invalid drop fn in vtable", self.path);
try_validation!(ectx.read_size_and_align_from_vtable(vtable),
"invalid size or align in vtable", self.path);
// FIXME: More checks for the vtable.
}
ty::Slice(..) | ty::Str => {
try_validation!(meta.unwrap().to_usize(self),
"non-integer slice length in fat pointer", path);
try_validation!(meta.unwrap().to_usize(ectx),
"non-integer slice length in fat pointer", self.path);
}
ty::Foreign(..) => {
// Unsized, but not fat.
@ -216,25 +308,25 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
}
}
// Make sure this is non-NULL and aligned
let (size, align) = self.size_and_align_of(meta, layout)?
let (size, align) = ectx.size_and_align_of(meta, layout)?
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| layout.size_and_align());
match self.memory.check_align(ptr, align) {
match ectx.memory.check_align(ptr, align) {
Ok(_) => {},
Err(err) => {
error!("{:?} is not aligned to {:?}", ptr, align);
match err.kind {
EvalErrorKind::InvalidNullPointerUsage =>
return validation_failure!("NULL reference", path),
return validation_failure!("NULL reference", self.path),
EvalErrorKind::AlignmentCheckFailed { .. } =>
return validation_failure!("unaligned reference", path),
return validation_failure!("unaligned reference", self.path),
_ =>
return validation_failure!(
"dangling (out-of-bounds) reference (might be NULL at \
run-time)",
path
self.path
),
}
}
@ -242,29 +334,29 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// Turn ptr into place.
// `ref_to_mplace` also calls the machine hook for (re)activating the tag,
// which in turn will (in full miri) check if the pointer is dereferencable.
let place = self.ref_to_mplace(value)?;
let place = ectx.ref_to_mplace(value)?;
// Recursive checking
if let Some(ref_tracking) = ref_tracking {
assert!(const_mode, "We should only do recursie checking in const mode");
if let Some(ref mut ref_tracking) = self.ref_tracking {
assert!(self.const_mode, "We should only do recursie checking in const mode");
if size != Size::ZERO {
// Non-ZST also have to be dereferencable
let ptr = try_validation!(place.ptr.to_ptr(),
"integer pointer in non-ZST reference", path);
"integer pointer in non-ZST reference", self.path);
// Skip validation entirely for some external statics
let alloc_kind = self.tcx.alloc_map.lock().get(ptr.alloc_id);
let alloc_kind = ectx.tcx.alloc_map.lock().get(ptr.alloc_id);
if let Some(AllocType::Static(did)) = alloc_kind {
// `extern static` cannot be validated as they have no body.
// FIXME: Statics from other crates are also skipped.
// They might be checked at a different type, but for now we
// want to avoid recursing too deeply. This is not sound!
if !did.is_local() || self.tcx.is_foreign_item(did) {
if !did.is_local() || ectx.tcx.is_foreign_item(did) {
return Ok(());
}
}
// Maintain the invariant that the place we are checking is
// already verified to be in-bounds.
try_validation!(self.memory.check_bounds(ptr, size, false),
"dangling (not entirely in bounds) reference", path);
try_validation!(ectx.memory.check_bounds(ptr, size, false),
"dangling (not entirely in bounds) reference", self.path);
}
// Check if we have encountered this pointer+layout combination
// before. Proceed recursively even for integer pointers, no
@ -273,16 +365,16 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
let op = place.into();
if ref_tracking.seen.insert(op) {
trace!("Recursing below ptr {:#?}", *op);
ref_tracking.todo.push((op, path_clone_and_deref(path)));
ref_tracking.todo.push((op, path_clone_and_deref(&self.path)));
}
}
}
ty::FnPtr(_sig) => {
let value = value.to_scalar_or_undef();
let ptr = try_validation!(value.to_ptr(),
scalar_format(value), path, "a pointer");
let _fn = try_validation!(self.memory.get_fn(ptr),
scalar_format(value), path, "a function pointer");
scalar_format(value), self.path, "a pointer");
let _fn = try_validation!(ectx.memory.get_fn(ptr),
scalar_format(value), self.path, "a function pointer");
// FIXME: Check if the signature matches
}
// This should be all the primitive types
@ -292,16 +384,15 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
Ok(())
}
/// Make sure that `value` matches the
fn validate_scalar_layout(
&self,
value: ScalarMaybeUndef<M::PointerTag>,
size: Size,
path: &Vec<PathElem>,
layout: &layout::Scalar,
) -> EvalResult<'tcx> {
fn visit_scalar(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, layout: &layout::Scalar)
-> EvalResult<'tcx>
{
let value = try_validation!(ectx.read_scalar(self.op),
"uninitialized or unrepresentable data", self.path);
// Determine the allowed range
let (lo, hi) = layout.valid_range.clone().into_inner();
let max_hi = u128::max_value() >> (128 - size.bits()); // as big as the size fits
// `max_hi` is as big as the size fits
let max_hi = u128::max_value() >> (128 - self.op.layout.size.bits());
assert!(hi <= max_hi);
// We could also write `(hi + 1) % (max_hi + 1) == lo` but `max_hi + 1` overflows for `u128`
if (lo == 0 && hi == max_hi) || (hi + 1 == lo) {
@ -310,7 +401,8 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
}
// At least one value is excluded. Get the bits.
let value = try_validation!(value.not_undef(),
scalar_format(value), path, format!("something in the range {:?}", layout.valid_range));
scalar_format(value), self.path,
format!("something in the range {:?}", layout.valid_range));
let bits = match value {
Scalar::Ptr(ptr) => {
if lo == 1 && hi == max_hi {
@ -318,13 +410,13 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// We can call `check_align` to check non-NULL-ness, but have to also look
// for function pointers.
let non_null =
self.memory.check_align(
ectx.memory.check_align(
Scalar::Ptr(ptr), Align::from_bytes(1, 1).unwrap()
).is_ok() ||
self.memory.get_fn(ptr).is_ok();
ectx.memory.get_fn(ptr).is_ok();
if !non_null {
// could be NULL
return validation_failure!("a potentially NULL pointer", path);
return validation_failure!("a potentially NULL pointer", self.path);
}
return Ok(());
} else {
@ -332,7 +424,7 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
// value.
return validation_failure!(
"a pointer",
path,
self.path,
format!(
"something that cannot possibly be outside the (wrapping) range {:?}",
layout.valid_range
@ -340,8 +432,8 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
);
}
}
Scalar::Bits { bits, size: value_size } => {
assert_eq!(value_size as u64, size.bytes());
Scalar::Bits { bits, size } => {
assert_eq!(size as u64, self.op.layout.size.bytes());
bits
}
};
@ -355,7 +447,7 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
} else {
validation_failure!(
bits,
path,
self.path,
format!("something in the range {:?} or {:?}", 0..=hi, lo..=max_hi)
)
}
@ -365,7 +457,7 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
} else {
validation_failure!(
bits,
path,
self.path,
if hi == max_hi {
format!("something greater or equal to {}", lo)
} else {
@ -376,250 +468,147 @@ impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M>
}
}
fn visit_fields(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, num_fields: usize)
-> EvalResult<'tcx>
{
// Remember some stuff that will change for the recursive calls
let op = self.op;
let path_len = self.path.len();
// Go look at all the fields
for i in 0..num_fields {
// Adapt our state
self.op = ectx.operand_field(op, i as u64)?;
self.path.push(aggregate_field_path_elem(op.layout, i, *ectx.tcx));
// Recursive visit
ectx.visit_value(self)?;
// Restore original state
self.op = op;
self.path.truncate(path_len);
}
Ok(())
}
fn visit_str(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>
{
let mplace = self.op.to_mem_place(); // strings are never immediate
try_validation!(ectx.read_str(mplace),
"uninitialized or non-UTF-8 data in str", self.path);
Ok(())
}
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>) -> EvalResult<'tcx>
{
let mplace = if self.op.layout.is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(self.op.layout, ectx)
} else {
// non-ZST array/slice/str cannot be immediate
self.op.to_mem_place()
};
match self.op.layout.ty.sty {
ty::Str => bug!("Strings should be handled separately"),
// Special handling for arrays/slices of builtin integer types
ty::Array(tys, ..) | ty::Slice(tys) if {
// This optimization applies only for integer and floating point types
// (i.e., types that can hold arbitrary bytes).
match tys.sty {
ty::Int(..) | ty::Uint(..) | ty::Float(..) => true,
_ => false,
}
} => {
// This is the length of the array/slice.
let len = mplace.len(ectx)?;
// This is the element type size.
let ty_size = ectx.layout_of(tys)?.size;
// This is the size in bytes of the whole array.
let size = ty_size * len;
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `visit_primitive`.
// In run-time mode, we accept pointers in here. This is actually more
// permissive than a per-element check would be, e.g. we accept
// an &[u8] that contains a pointer even though bytewise checking would
// reject it. However, that's good: We don't inherently want
// to reject those pointers, we just do not have the machinery to
// talk about parts of a pointer.
// We also accept undef, for consistency with the type-based checks.
match ectx.memory.check_bytes(
mplace.ptr,
size,
/*allow_ptr_and_undef*/!self.const_mode,
) {
// In the happy case, we needn't check anything else.
Ok(()) => {},
// Some error happened, try to provide a more detailed description.
Err(err) => {
// For some errors we might be able to provide extra information
match err.kind {
EvalErrorKind::ReadUndefBytes(offset) => {
// Some byte was undefined, determine which
// element that byte belongs to so we can
// provide an index.
let i = (offset.bytes() / ty_size.bytes()) as usize;
self.path.push(PathElem::ArrayElem(i));
return validation_failure!(
"undefined bytes", self.path
)
},
// Other errors shouldn't be possible
_ => return Err(err),
}
}
}
},
_ => {
// Remember some stuff that will change for the recursive calls
let op = self.op;
let path_len = self.path.len();
// This handles the unsized case correctly as well, as well as
// SIMD and all sorts of other array-like types.
for (i, field) in ectx.mplace_array_fields(mplace)?.enumerate() {
// Adapt our state
self.op = field?.into();
self.path.push(PathElem::ArrayElem(i));
// Recursive visit
ectx.visit_value(self)?;
// Restore original state
self.op = op;
self.path.truncate(path_len);
}
}
}
Ok(())
}
}
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
/// This function checks the data at `op`. `op` is assumed to cover valid memory if it
/// is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
/// The `path` may be pushed to, but the part that is present when the function
/// starts must not be changed!
///
/// `ref_tracking` can be None to avoid recursive checking below references.
/// This also toggles between "run-time" (no recursion) and "compile-time" (with recursion)
/// validation (e.g., pointer values are fine in integers at runtime).
pub fn validate_operand(
&self,
dest: OpTy<'tcx, M::PointerTag>,
path: &mut Vec<PathElem>,
mut ref_tracking: Option<&mut RefTracking<'tcx, M::PointerTag>>,
&mut self,
op: OpTy<'tcx, M::PointerTag>,
path: Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<'tcx, M::PointerTag>>,
const_mode: bool,
) -> EvalResult<'tcx> {
trace!("validate_operand: {:?}, {:?}", *dest, dest.layout.ty);
trace!("validate_operand: {:?}, {:?}", *op, op.layout.ty);
// If this is a multi-variant layout, we have find the right one and proceed with that.
// (No good reasoning to make this recursion, but it is equivalent to that.)
let dest = match dest.layout.variants {
layout::Variants::NicheFilling { .. } |
layout::Variants::Tagged { .. } => {
let variant = match self.read_discriminant(dest) {
Ok(res) => res.1,
Err(err) => match err.kind {
EvalErrorKind::InvalidDiscriminant(val) =>
return validation_failure!(
format!("invalid enum discriminant {}", val), path
),
_ =>
return validation_failure!(
String::from("non-integer enum discriminant"), path
),
}
};
// Put the variant projection onto the path, as a field
path.push(PathElem::Field(dest.layout.ty
.ty_adt_def()
.unwrap()
.variants[variant].name));
// Proceed with this variant
let dest = self.operand_downcast(dest, variant)?;
trace!("variant layout: {:#?}", dest.layout);
dest
},
layout::Variants::Single { .. } => dest,
// Construct a visitor
let mut visitor = ValidityVisitor {
op,
path,
ref_tracking,
const_mode
};
// First thing, find the real type:
// If it is a trait object, switch to the actual type that was used to create it.
let dest = match dest.layout.ty.sty {
ty::Dynamic(..) => {
let dest = dest.to_mem_place(); // immediate trait objects are not a thing
self.unpack_dyn_trait(dest)?.1.into()
},
_ => dest
};
// If this is a scalar, validate the scalar layout.
// Things can be aggregates and have scalar layout at the same time, and that
// is very relevant for `NonNull` and similar structs: We need to validate them
// at their scalar layout *before* descending into their fields.
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g. first we check
// MyNewtype and then the scalar in there).
match dest.layout.abi {
layout::Abi::Uninhabited =>
return validation_failure!("a value of an uninhabited type", path),
layout::Abi::Scalar(ref layout) => {
let value = try_validation!(self.read_scalar(dest),
"uninitialized or unrepresentable data", path);
self.validate_scalar_layout(value, dest.layout.size, &path, layout)?;
}
// FIXME: Should we do something for ScalarPair? Vector?
_ => {}
}
// Check primitive types. We do this after checking the scalar layout,
// just to have that done as well. Primitives can have varying layout,
// so we check them separately and before aggregate handling.
// It is CRITICAL that we get this check right, or we might be
// validating the wrong thing!
let primitive = match dest.layout.fields {
// Primitives appear as Union with 0 fields -- except for fat pointers.
layout::FieldPlacement::Union(0) => true,
_ => dest.layout.ty.builtin_deref(true).is_some(),
};
if primitive {
let value = try_validation!(self.read_immediate(dest),
"uninitialized or unrepresentable data", path);
return self.validate_primitive_type(
value,
&path,
ref_tracking,
const_mode,
);
}
// Validate all fields of compound data structures
let path_len = path.len(); // Remember the length, in case we need to truncate
match dest.layout.fields {
layout::FieldPlacement::Union(fields) => {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as an unambiguous signal for detecting primitives. Make sure
// we did not miss any primitive.
debug_assert!(fields > 0);
// We can't check unions, their bits are allowed to be anything.
// The fields don't need to correspond to any bit pattern of the union's fields.
// See https://github.com/rust-lang/rust/issues/32836#issuecomment-406875389
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
// Go look at all the fields
for i in 0..offsets.len() {
let field = self.operand_field(dest, i as u64)?;
path.push(self.aggregate_field_path_elem(dest.layout, i));
self.validate_operand(
field,
path,
ref_tracking.as_mut().map(|r| &mut **r),
const_mode,
)?;
path.truncate(path_len);
}
}
layout::FieldPlacement::Array { stride, .. } => {
let dest = if dest.layout.is_zst() {
// it's a ZST, the memory content cannot matter
MPlaceTy::dangling(dest.layout, self)
} else {
// non-ZST array/slice/str cannot be immediate
dest.to_mem_place()
};
match dest.layout.ty.sty {
// Special handling for strings to verify UTF-8
ty::Str => {
try_validation!(self.read_str(dest),
"uninitialized or non-UTF-8 data in str", path);
}
// Special handling for arrays/slices of builtin integer types
ty::Array(tys, ..) | ty::Slice(tys) if {
// This optimization applies only for integer and floating point types
// (i.e., types that can hold arbitrary bytes).
match tys.sty {
ty::Int(..) | ty::Uint(..) | ty::Float(..) => true,
_ => false,
}
} => {
// This is the length of the array/slice.
let len = dest.len(self)?;
// Since primitive types are naturally aligned and tightly packed in arrays,
// we can use the stride to get the size of the integral type.
let ty_size = stride.bytes();
// This is the size in bytes of the whole array.
let size = Size::from_bytes(ty_size * len);
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `validate_primitive_type`.
// In run-time mode, we accept pointers in here. This is actually more
// permissive than a per-element check would be, e.g. we accept
// an &[u8] that contains a pointer even though bytewise checking would
// reject it. However, that's good: We don't inherently want
// to reject those pointers, we just do not have the machinery to
// talk about parts of a pointer.
// We also accept undef, for consistency with the type-based checks.
match self.memory.check_bytes(
dest.ptr,
size,
/*allow_ptr_and_undef*/!const_mode,
) {
// In the happy case, we needn't check anything else.
Ok(()) => {},
// Some error happened, try to provide a more detailed description.
Err(err) => {
// For some errors we might be able to provide extra information
match err.kind {
EvalErrorKind::ReadUndefBytes(offset) => {
// Some byte was undefined, determine which
// element that byte belongs to so we can
// provide an index.
let i = (offset.bytes() / ty_size) as usize;
path.push(PathElem::ArrayElem(i));
return validation_failure!(
"undefined bytes", path
)
},
// Other errors shouldn't be possible
_ => return Err(err),
}
}
}
},
_ => {
// This handles the unsized case correctly as well, as well as
// SIMD an all sorts of other array-like types.
for (i, field) in self.mplace_array_fields(dest)?.enumerate() {
let field = field?;
path.push(PathElem::ArrayElem(i));
self.validate_operand(
field.into(),
path,
ref_tracking.as_mut().map(|r| &mut **r),
const_mode,
)?;
path.truncate(path_len);
}
}
}
},
}
Ok(())
}
fn aggregate_field_path_elem(&self, layout: TyLayout<'tcx>, field: usize) -> PathElem {
match layout.ty.sty {
// generators and closures.
ty::Closure(def_id, _) | ty::Generator(def_id, _, _) => {
if let Some(upvar) = self.tcx.optimized_mir(def_id).upvar_decls.get(field) {
PathElem::ClosureVar(upvar.debug_name)
} else {
// Sometimes the index is beyond the number of freevars (seen
// for a generator).
PathElem::ClosureVar(Symbol::intern(&field.to_string()))
}
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
let variant = match layout.variants {
layout::Variants::Single { index } => &def.variants[index],
_ => bug!("aggregate_field_path_elem: got enum but not in a specific variant"),
};
PathElem::Field(variant.fields[field].ident.name)
}
// other ADTs
ty::Adt(def, _) => PathElem::Field(def.non_enum_variant().fields[field].ident.name),
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
// Run it
self.visit_value(&mut visitor)
}
}

View File

@ -0,0 +1,125 @@
//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
//! types until we arrive at the leaves, with custom handling for primitive types.
use std::fmt;
use rustc::ty::layout::{self, TyLayout};
use rustc::ty;
use rustc::mir::interpret::{
EvalResult,
};
use super::{
Machine, EvalContext,
};
// How to traverse a value and what to do when we are at the leaves.
// In the future, we might want to turn this into two traits, but so far the
// only implementations we have couldn't share any code anyway.
pub trait ValueVisitor<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>>: fmt::Debug {
// Get this value's layout.
fn layout(&self) -> TyLayout<'tcx>;
// Downcast functions. These change the value as a side-effect.
fn downcast_enum(&mut self, ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>;
fn downcast_dyn_trait(&mut self, ectx: &EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>;
// Visit all fields of a compound.
// Just call `visit_value` if you want to go on recursively.
fn visit_fields(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, num_fields: usize)
-> EvalResult<'tcx>;
// Optimized handling for arrays -- avoid computing the layout for every field.
// Also it is the value's responsibility to figure out the length.
fn visit_array(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>) -> EvalResult<'tcx>;
// Special handling for strings.
fn visit_str(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>;
// Actions on the leaves.
fn visit_scalar(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>, layout: &layout::Scalar)
-> EvalResult<'tcx>;
fn visit_primitive(&mut self, ectx: &mut EvalContext<'a, 'mir, 'tcx, M>)
-> EvalResult<'tcx>;
}
impl<'a, 'mir, 'tcx, M: Machine<'a, 'mir, 'tcx>> EvalContext<'a, 'mir, 'tcx, M> {
pub fn visit_value<V: ValueVisitor<'a, 'mir, 'tcx, M>>(&mut self, v: &mut V) -> EvalResult<'tcx> {
trace!("visit_value: {:?}", v);
// If this is a multi-variant layout, we have find the right one and proceed with that.
// (No benefit from making this recursion, but it is equivalent to that.)
match v.layout().variants {
layout::Variants::NicheFilling { .. } |
layout::Variants::Tagged { .. } => {
v.downcast_enum(self)?;
trace!("variant layout: {:#?}", v.layout());
}
layout::Variants::Single { .. } => {}
}
// Even for single variants, we might be able to get a more refined type:
// If it is a trait object, switch to the actual type that was used to create it.
match v.layout().ty.sty {
ty::Dynamic(..) => {
v.downcast_dyn_trait(self)?;
},
_ => {},
};
// If this is a scalar, visit it as such.
// Things can be aggregates and have scalar layout at the same time, and that
// is very relevant for `NonNull` and similar structs: We need to visit them
// at their scalar layout *before* descending into their fields.
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g. first we check
// MyNewtype and then the scalar in there).
match v.layout().abi {
layout::Abi::Scalar(ref layout) => {
v.visit_scalar(self, layout)?;
}
// FIXME: Should we do something for ScalarPair? Vector?
_ => {}
}
// Check primitive types. We do this after checking the scalar layout,
// just to have that done as well. Primitives can have varying layout,
// so we check them separately and before aggregate handling.
// It is CRITICAL that we get this check right, or we might be
// validating the wrong thing!
let primitive = match v.layout().fields {
// Primitives appear as Union with 0 fields -- except for Boxes and fat pointers.
layout::FieldPlacement::Union(0) => true,
_ => v.layout().ty.builtin_deref(true).is_some(),
};
if primitive {
return v.visit_primitive(self);
}
// Proceed into the fields.
match v.layout().fields {
layout::FieldPlacement::Union(fields) => {
// Empty unions are not accepted by rustc. That's great, it means we can
// use that as an unambiguous signal for detecting primitives. Make sure
// we did not miss any primitive.
debug_assert!(fields > 0);
// We can't traverse unions, their bits are allowed to be anything.
// The fields don't need to correspond to any bit pattern of the union's fields.
// See https://github.com/rust-lang/rust/issues/32836#issuecomment-406875389
Ok(())
},
layout::FieldPlacement::Arbitrary { ref offsets, .. } => {
v.visit_fields(self, offsets.len())
},
layout::FieldPlacement::Array { .. } => {
match v.layout().ty.sty {
// Strings have properties that cannot be expressed pointwise.
ty::Str => v.visit_str(self),
// General case -- might also be SIMD vector or so
_ => v.visit_array(self),
}
}
}
}
}