Change the elements in the task-local map to be actual key-value pairs

This commit is contained in:
Alex Crichton 2013-07-09 09:40:50 -07:00
parent a89af1fa4c
commit 692a22e69d
3 changed files with 112 additions and 128 deletions

View File

@ -28,7 +28,7 @@ magic.
use prelude::*; use prelude::*;
use task::local_data_priv::{local_get, local_pop, local_modify, local_set, Handle}; use task::local_data_priv::{local_get, local_pop, local_set, Handle};
#[cfg(test)] use task; #[cfg(test)] use task;
@ -83,7 +83,11 @@ pub unsafe fn local_data_modify<T: 'static>(
key: LocalDataKey<T>, key: LocalDataKey<T>,
modify_fn: &fn(Option<@T>) -> Option<@T>) { modify_fn: &fn(Option<@T>) -> Option<@T>) {
local_modify(Handle::new(), key, modify_fn) let cur = local_data_pop(key);
match modify_fn(cur) {
Some(next) => { local_data_set(key, next); }
None => {}
}
} }
#[test] #[test]

View File

@ -32,7 +32,7 @@ pub struct Task {
} }
pub struct GarbageCollector; pub struct GarbageCollector;
pub struct LocalStorage(*c_void, Option<~fn(*c_void)>); pub struct LocalStorage(*c_void, Option<extern "Rust" fn(*c_void)>);
pub struct Unwinder { pub struct Unwinder {
unwinding: bool, unwinding: bool,

View File

@ -11,7 +11,6 @@
#[allow(missing_doc)]; #[allow(missing_doc)];
use cast; use cast;
use cmp::Eq;
use libc; use libc;
use local_data::LocalDataKey; use local_data::LocalDataKey;
use prelude::*; use prelude::*;
@ -44,25 +43,19 @@ impl Handle {
} }
} }
pub trait LocalData { } trait LocalData {}
impl<T: 'static> LocalData for @T { } impl<T: 'static> LocalData for T {}
impl Eq for @LocalData { // The task-local-map actuall stores all TLS information. Right now it's a list
fn eq(&self, other: &@LocalData) -> bool { // of key-value pairs. Each value is an actual Rust type so that when the map is
unsafe { // destroyed all of the contents are destroyed. Each of the keys are actually
let ptr_a: &(uint, uint) = cast::transmute(self); // addresses which don't need to be destroyed.
let ptr_b: &(uint, uint) = cast::transmute(other); //
return ptr_a == ptr_b; // n.b. Has to be a pointer at outermost layer; the foreign call returns void *.
} //
} // n.b. If TLS is used heavily in future, this could be made more efficient with
fn ne(&self, other: &@LocalData) -> bool { !(*self).eq(other) } // a proper map.
} type TaskLocalMap = ~[Option<(*libc::c_void, @LocalData)>];
// If TLS is used heavily in future, this could be made more efficient with a
// proper map.
type TaskLocalElement = (*libc::c_void, *libc::c_void, @LocalData);
// Has to be a pointer at outermost layer; the foreign call returns void *.
type TaskLocalMap = ~[Option<TaskLocalElement>];
fn cleanup_task_local_map(map_ptr: *libc::c_void) { fn cleanup_task_local_map(map_ptr: *libc::c_void) {
unsafe { unsafe {
@ -76,53 +69,52 @@ fn cleanup_task_local_map(map_ptr: *libc::c_void) {
// Gets the map from the runtime. Lazily initialises if not done so already. // Gets the map from the runtime. Lazily initialises if not done so already.
unsafe fn get_local_map(handle: Handle) -> &mut TaskLocalMap { unsafe fn get_local_map(handle: Handle) -> &mut TaskLocalMap {
match handle {
OldHandle(task) => get_task_local_map(task),
NewHandle(local_storage) => get_newsched_local_map(local_storage)
}
}
unsafe fn get_task_local_map(task: *rust_task) -> &mut TaskLocalMap { unsafe fn oldsched_map(task: *rust_task) -> &mut TaskLocalMap {
extern fn cleanup_extern_cb(map_ptr: *libc::c_void) {
extern fn cleanup_task_local_map_extern_cb(map_ptr: *libc::c_void) { cleanup_task_local_map(map_ptr);
cleanup_task_local_map(map_ptr);
}
// Relies on the runtime initialising the pointer to null.
// Note: the map is an owned pointer and is "owned" by TLS. It is moved
// into the tls slot for this task, and then mutable loans are taken from
// this slot to modify the map.
let map_ptr = rt::rust_get_task_local_data(task);
if (*map_ptr).is_null() {
// First time TLS is used, create a new map and set up the necessary
// TLS information for its safe destruction
let map: TaskLocalMap = ~[];
*map_ptr = cast::transmute(map);
rt::rust_task_local_data_atexit(task, cleanup_task_local_map_extern_cb);
}
return cast::transmute(map_ptr);
}
unsafe fn get_newsched_local_map(local: *mut LocalStorage) -> &mut TaskLocalMap {
// This is based on the same idea as the oldsched code above.
match &mut *local {
// If the at_exit function is already set, then we just need to take a
// loan out on the TLS map stored inside
&LocalStorage(ref mut map_ptr, Some(_)) => {
assert!(map_ptr.is_not_null());
return cast::transmute(map_ptr);
} }
// If this is the first time we've accessed TLS, perform similar
// actions to the oldsched way of doing things. // Relies on the runtime initialising the pointer to null.
&LocalStorage(ref mut map_ptr, ref mut at_exit) => { // Note: the map is an owned pointer and is "owned" by TLS. It is moved
assert!(map_ptr.is_null()); // into the tls slot for this task, and then mutable loans are taken
assert!(at_exit.is_none()); // from this slot to modify the map.
let map_ptr = rt::rust_get_task_local_data(task);
if (*map_ptr).is_null() {
// First time TLS is used, create a new map and set up the necessary
// TLS information for its safe destruction
let map: TaskLocalMap = ~[]; let map: TaskLocalMap = ~[];
*map_ptr = cast::transmute(map); *map_ptr = cast::transmute(map);
let at_exit_fn: ~fn(*libc::c_void) = |p| cleanup_task_local_map(p); rt::rust_task_local_data_atexit(task, cleanup_extern_cb);
*at_exit = Some(at_exit_fn);
return cast::transmute(map_ptr);
} }
return cast::transmute(map_ptr);
}
unsafe fn newsched_map(local: *mut LocalStorage) -> &mut TaskLocalMap {
// This is based on the same idea as the oldsched code above.
match &mut *local {
// If the at_exit function is already set, then we just need to take
// a loan out on the TLS map stored inside
&LocalStorage(ref mut map_ptr, Some(_)) => {
assert!(map_ptr.is_not_null());
return cast::transmute(map_ptr);
}
// If this is the first time we've accessed TLS, perform similar
// actions to the oldsched way of doing things.
&LocalStorage(ref mut map_ptr, ref mut at_exit) => {
assert!(map_ptr.is_null());
assert!(at_exit.is_none());
let map: TaskLocalMap = ~[];
*map_ptr = cast::transmute(map);
*at_exit = Some(cleanup_task_local_map);
return cast::transmute(map_ptr);
}
}
}
match handle {
OldHandle(task) => oldsched_map(task),
NewHandle(local_storage) => newsched_map(local_storage)
} }
} }
@ -132,95 +124,83 @@ unsafe fn key_to_key_value<T: 'static>(key: LocalDataKey<T>) -> *libc::c_void {
} }
// If returning Some(..), returns with @T with the map's reference. Careful! // If returning Some(..), returns with @T with the map's reference. Careful!
unsafe fn local_data_lookup<T: 'static>( unsafe fn local_data_lookup<T: 'static>(map: &TaskLocalMap,
map: &mut TaskLocalMap, key: LocalDataKey<T>) key: LocalDataKey<T>)
-> Option<(uint, *libc::c_void)> { -> Option<(uint, @T)>
{
use managed::raw::BoxRepr;
let key_value = key_to_key_value(key); let key_value = key_to_key_value(key);
for map.iter().enumerate().advance |(i, entry)| { for map.iter().enumerate().advance |(i, entry)| {
match *entry { match *entry {
Some((k, data, _)) if k == key_value => { return Some((i, data)); } Some((k, ref data)) if k == key_value => {
// We now have the correct 'data' as type @LocalData which we
// need to somehow transmute this back to @T. This was
// originally stored into the map as:
//
// let data = @T;
// let element = @data as @LocalData;
// insert(key, element);
//
// This means that the element stored is a 2-word pair (because
// it's a trait). The second element is the vtable (we don't
// need it), and the first element is actually '@@T'. Not only
// is this @@T, but it's a pointer to the base of the @@T (box
// and all), so we have to traverse this to find the actual
// pointer that we want.
let (_vtable, box) =
*cast::transmute::<&@LocalData, &(uint, *BoxRepr)>(data);
let ptr: &@T = cast::transmute(&(*box).data);
return Some((i, *ptr));
}
_ => {} _ => {}
} }
} }
return None; return None;
} }
unsafe fn local_get_helper<T: 'static>( pub unsafe fn local_pop<T: 'static>(handle: Handle,
handle: Handle, key: LocalDataKey<T>, key: LocalDataKey<T>) -> Option<@T> {
do_pop: bool) -> Option<@T> {
let map = get_local_map(handle); let map = get_local_map(handle);
// Interpreturn our findings from the map match local_data_lookup(map, key) {
do local_data_lookup(map, key).map |result| { Some((index, data)) => {
// A reference count magically appears on 'data' out of thin air. It
// was referenced in the local_data box, though, not here, so before
// overwriting the local_data_box we need to give an extra reference.
// We must also give an extra reference when not removing.
let (index, data_ptr) = *result;
let data: @T = cast::transmute(data_ptr);
cast::bump_box_refcount(data);
if do_pop {
map[index] = None; map[index] = None;
Some(data)
} }
data None => None
} }
} }
pub unsafe fn local_get<T: 'static>(handle: Handle,
pub unsafe fn local_pop<T: 'static>( key: LocalDataKey<T>) -> Option<@T> {
handle: Handle, match local_data_lookup(get_local_map(handle), key) {
key: LocalDataKey<T>) -> Option<@T> { Some((_, data)) => Some(data),
None => None
local_get_helper(handle, key, true) }
} }
pub unsafe fn local_get<T: 'static>( pub unsafe fn local_set<T: 'static>(handle: Handle,
handle: Handle, key: LocalDataKey<T>,
key: LocalDataKey<T>) -> Option<@T> { data: @T) {
local_get_helper(handle, key, false)
}
pub unsafe fn local_set<T: 'static>(
handle: Handle, key: LocalDataKey<T>, data: @T) {
let map = get_local_map(handle); let map = get_local_map(handle);
// Store key+data as *voids. Data is invisibly referenced once; key isn't.
let keyval = key_to_key_value(key); let keyval = key_to_key_value(key);
// We keep the data in two forms: one as an unsafe pointer, so we can get
// it back by casting; another in an existential box, so the reference we // When the task-local map is destroyed, all the data needs to be cleaned
// own on it can be dropped when the box is destroyed. The unsafe pointer // up. For this reason we can't do some clever tricks to store '@T' as a
// does not have a reference associated with it, so it may become invalid // '*c_void' or something like that. To solve the problem, we cast
// when the box is destroyed. // everything to a trait (LocalData) which is then stored inside the map.
let data_ptr = *cast::transmute::<&@T, &*libc::c_void>(&data); // Upon destruction of the map, all the objects will be destroyed and the
let data_box = @data as @LocalData; // traits have enough information about them to destroy themselves.
// Construct new entry to store in the map. let entry = Some((keyval, @data as @LocalData));
let new_entry = Some((keyval, data_ptr, data_box));
// Find a place to put it.
match local_data_lookup(map, key) { match local_data_lookup(map, key) {
Some((index, _old_data_ptr)) => { Some((index, _)) => { map[index] = entry; }
// Key already had a value set, _old_data_ptr, whose reference
// will get dropped when the local_data box is overwritten.
map[index] = new_entry;
}
None => { None => {
// Find an empty slot. If not, grow the vector. // Find an empty slot. If not, grow the vector.
match map.iter().position(|x| x.is_none()) { match map.iter().position(|x| x.is_none()) {
Some(empty_index) => { map[empty_index] = new_entry; } Some(empty_index) => { map[empty_index] = entry; }
None => { map.push(new_entry); } None => { map.push(entry); }
} }
} }
} }
} }
pub unsafe fn local_modify<T: 'static>(
handle: Handle, key: LocalDataKey<T>,
modify_fn: &fn(Option<@T>) -> Option<@T>) {
// Could be more efficient by doing the lookup work, but this is easy.
let newdata = modify_fn(local_pop(handle, key));
if newdata.is_some() {
local_set(handle, key, newdata.unwrap());
}
}