Auto merge of #28345 - japaric:op-assign, r=nmatsakis

Implements overload-able augmented/compound assignments, like `a += b` via the `AddAssign` trait, as specified in RFC [953]

[953]: https://github.com/rust-lang/rfcs/blob/master/text/0953-op-assign.md

r? @nikomatsakis
This commit is contained in:
bors 2015-09-19 21:19:29 +00:00
commit 783c3fcc1e
16 changed files with 1005 additions and 81 deletions

View File

@ -927,6 +927,534 @@ macro_rules! shr_impl_all {
shr_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
/// The `AddAssign` trait is used to specify the functionality of `+=`.
///
/// # Examples
///
/// A trivial implementation of `AddAssign`. When `Foo += Foo` happens, it ends up
/// calling `add_assign`, and therefore, `main` prints `Adding!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::AddAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl AddAssign for Foo {
/// fn add_assign(&mut self, _rhs: Foo) {
/// println!("Adding!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo += Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "add_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait AddAssign<Rhs=Self> {
/// The method for the `+=` operator
fn add_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! add_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl AddAssign for $t {
#[inline]
fn add_assign(&mut self, other: $t) { *self += other }
}
)+)
}
#[cfg(not(stage0))]
add_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `SubAssign` trait is used to specify the functionality of `-=`.
///
/// # Examples
///
/// A trivial implementation of `SubAssign`. When `Foo -= Foo` happens, it ends up
/// calling `sub_assign`, and therefore, `main` prints `Subtracting!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::SubAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl SubAssign for Foo {
/// fn sub_assign(&mut self, _rhs: Foo) {
/// println!("Subtracting!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo -= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "sub_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait SubAssign<Rhs=Self> {
/// The method for the `-=` operator
fn sub_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! sub_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl SubAssign for $t {
#[inline]
fn sub_assign(&mut self, other: $t) { *self -= other }
}
)+)
}
#[cfg(not(stage0))]
sub_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `MulAssign` trait is used to specify the functionality of `*=`.
///
/// # Examples
///
/// A trivial implementation of `MulAssign`. When `Foo *= Foo` happens, it ends up
/// calling `mul_assign`, and therefore, `main` prints `Multiplying!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::MulAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl MulAssign for Foo {
/// fn mul_assign(&mut self, _rhs: Foo) {
/// println!("Multiplying!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo *= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "mul_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait MulAssign<Rhs=Self> {
/// The method for the `*=` operator
fn mul_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! mul_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl MulAssign for $t {
#[inline]
fn mul_assign(&mut self, other: $t) { *self *= other }
}
)+)
}
#[cfg(not(stage0))]
mul_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `DivAssign` trait is used to specify the functionality of `/=`.
///
/// # Examples
///
/// A trivial implementation of `DivAssign`. When `Foo /= Foo` happens, it ends up
/// calling `div_assign`, and therefore, `main` prints `Dividing!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::DivAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl DivAssign for Foo {
/// fn div_assign(&mut self, _rhs: Foo) {
/// println!("Dividing!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo /= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "div_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait DivAssign<Rhs=Self> {
/// The method for the `/=` operator
fn div_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! div_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl DivAssign for $t {
#[inline]
fn div_assign(&mut self, other: $t) { *self /= other }
}
)+)
}
#[cfg(not(stage0))]
div_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `RemAssign` trait is used to specify the functionality of `%=`.
///
/// # Examples
///
/// A trivial implementation of `RemAssign`. When `Foo %= Foo` happens, it ends up
/// calling `rem_assign`, and therefore, `main` prints `Remainder-ing!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::RemAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl RemAssign for Foo {
/// fn rem_assign(&mut self, _rhs: Foo) {
/// println!("Remainder-ing!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo %= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "rem_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait RemAssign<Rhs=Self> {
/// The method for the `%=` operator
fn rem_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! rem_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl RemAssign for $t {
#[inline]
fn rem_assign(&mut self, other: $t) { *self %= other }
}
)+)
}
#[cfg(not(stage0))]
rem_assign_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `BitAndAssign` trait is used to specify the functionality of `&=`.
///
/// # Examples
///
/// A trivial implementation of `BitAndAssign`. When `Foo &= Foo` happens, it ends up
/// calling `bitand_assign`, and therefore, `main` prints `Bitwise And-ing!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::BitAndAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl BitAndAssign for Foo {
/// fn bitand_assign(&mut self, _rhs: Foo) {
/// println!("Bitwise And-ing!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo &= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "bitand_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait BitAndAssign<Rhs=Self> {
/// The method for the `&` operator
fn bitand_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! bitand_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl BitAndAssign for $t {
#[inline]
fn bitand_assign(&mut self, other: $t) { *self &= other }
}
)+)
}
#[cfg(not(stage0))]
bitand_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
/// The `BitOrAssign` trait is used to specify the functionality of `|=`.
///
/// # Examples
///
/// A trivial implementation of `BitOrAssign`. When `Foo |= Foo` happens, it ends up
/// calling `bitor_assign`, and therefore, `main` prints `Bitwise Or-ing!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::BitOrAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl BitOrAssign for Foo {
/// fn bitor_assign(&mut self, _rhs: Foo) {
/// println!("Bitwise Or-ing!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo |= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "bitor_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait BitOrAssign<Rhs=Self> {
/// The method for the `|=` operator
fn bitor_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! bitor_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl BitOrAssign for $t {
#[inline]
fn bitor_assign(&mut self, other: $t) { *self |= other }
}
)+)
}
#[cfg(not(stage0))]
bitor_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
/// The `BitXorAssign` trait is used to specify the functionality of `^=`.
///
/// # Examples
///
/// A trivial implementation of `BitXorAssign`. When `Foo ^= Foo` happens, it ends up
/// calling `bitxor_assign`, and therefore, `main` prints `Bitwise Xor-ing!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::BitXorAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl BitXorAssign for Foo {
/// fn bitxor_assign(&mut self, _rhs: Foo) {
/// println!("Bitwise Xor-ing!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo ^= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "bitxor_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait BitXorAssign<Rhs=Self> {
/// The method for the `^=` operator
fn bitxor_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! bitxor_assign_impl {
($($t:ty)+) => ($(
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl BitXorAssign for $t {
#[inline]
fn bitxor_assign(&mut self, other: $t) { *self ^= other }
}
)+)
}
#[cfg(not(stage0))]
bitxor_assign_impl! { bool usize u8 u16 u32 u64 isize i8 i16 i32 i64 }
/// The `ShlAssign` trait is used to specify the functionality of `<<=`.
///
/// # Examples
///
/// A trivial implementation of `ShlAssign`. When `Foo <<= Foo` happens, it ends up
/// calling `shl_assign`, and therefore, `main` prints `Shifting left!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::ShlAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl ShlAssign<Foo> for Foo {
/// fn shl_assign(&mut self, _rhs: Foo) {
/// println!("Shifting left!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo <<= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "shl_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait ShlAssign<Rhs> {
/// The method for the `<<=` operator
fn shl_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! shl_assign_impl {
($t:ty, $f:ty) => (
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl ShlAssign<$f> for $t {
#[inline]
fn shl_assign(&mut self, other: $f) {
*self <<= other
}
}
)
}
#[cfg(not(stage0))]
macro_rules! shl_assign_impl_all {
($($t:ty)*) => ($(
shl_assign_impl! { $t, u8 }
shl_assign_impl! { $t, u16 }
shl_assign_impl! { $t, u32 }
shl_assign_impl! { $t, u64 }
shl_assign_impl! { $t, usize }
shl_assign_impl! { $t, i8 }
shl_assign_impl! { $t, i16 }
shl_assign_impl! { $t, i32 }
shl_assign_impl! { $t, i64 }
shl_assign_impl! { $t, isize }
)*)
}
#[cfg(not(stage0))]
shl_assign_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
/// The `ShrAssign` trait is used to specify the functionality of `>>=`.
///
/// # Examples
///
/// A trivial implementation of `ShrAssign`. When `Foo >>= Foo` happens, it ends up
/// calling `shr_assign`, and therefore, `main` prints `Shifting right!`.
///
/// ```
/// #![feature(augmented_assignments)]
/// #![feature(op_assign_traits)]
///
/// use std::ops::ShrAssign;
///
/// #[derive(Copy, Clone)]
/// struct Foo;
///
/// impl ShrAssign<Foo> for Foo {
/// fn shr_assign(&mut self, _rhs: Foo) {
/// println!("Shifting right!");
/// }
/// }
///
/// fn main() {
/// let mut foo = Foo;
/// foo >>= Foo;
/// }
/// ```
#[cfg(not(stage0))]
#[lang = "shr_assign"]
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
pub trait ShrAssign<Rhs=Self> {
/// The method for the `>>=` operator
fn shr_assign(&mut self, Rhs);
}
#[cfg(not(stage0))]
macro_rules! shr_assign_impl {
($t:ty, $f:ty) => (
#[unstable(feature = "op_assign_traits", reason = "recently added", issue = "28235")]
impl ShrAssign<$f> for $t {
#[inline]
fn shr_assign(&mut self, other: $f) {
*self >>= other
}
}
)
}
#[cfg(not(stage0))]
macro_rules! shr_assign_impl_all {
($($t:ty)*) => ($(
shr_assign_impl! { $t, u8 }
shr_assign_impl! { $t, u16 }
shr_assign_impl! { $t, u32 }
shr_assign_impl! { $t, u64 }
shr_assign_impl! { $t, usize }
shr_assign_impl! { $t, i8 }
shr_assign_impl! { $t, i16 }
shr_assign_impl! { $t, i32 }
shr_assign_impl! { $t, i64 }
shr_assign_impl! { $t, isize }
)*)
}
#[cfg(not(stage0))]
shr_assign_impl_all! { u8 u16 u32 u64 usize i8 i16 i32 i64 isize }
/// The `Index` trait is used to specify the functionality of indexing operations
/// like `arr[idx]` when used in an immutable context.
///

View File

@ -525,11 +525,14 @@ impl<'d,'t,'a,'tcx> ExprUseVisitor<'d,'t,'a,'tcx> {
self.consume_expr(&**base);
}
hir::ExprAssignOp(_, ref lhs, ref rhs) => {
// This will have to change if/when we support
// overloaded operators for `+=` and so forth.
self.mutate_expr(expr, &**lhs, WriteAndRead);
self.consume_expr(&**rhs);
hir::ExprAssignOp(op, ref lhs, ref rhs) => {
// NB All our assignment operations take the RHS by value
assert!(::rustc_front::util::is_by_value_binop(op.node));
if !self.walk_overloaded_operator(expr, lhs, vec![rhs], PassArgs::ByValue) {
self.mutate_expr(expr, &**lhs, WriteAndRead);
self.consume_expr(&**rhs);
}
}
hir::ExprRepeat(ref base, ref count) => {

View File

@ -286,6 +286,16 @@ lets_do_this! {
BitOrTraitLangItem, "bitor", bitor_trait;
ShlTraitLangItem, "shl", shl_trait;
ShrTraitLangItem, "shr", shr_trait;
AddAssignTraitLangItem, "add_assign", add_assign_trait;
SubAssignTraitLangItem, "sub_assign", sub_assign_trait;
MulAssignTraitLangItem, "mul_assign", mul_assign_trait;
DivAssignTraitLangItem, "div_assign", div_assign_trait;
RemAssignTraitLangItem, "rem_assign", rem_assign_trait;
BitXorAssignTraitLangItem, "bitxor_assign", bitxor_assign_trait;
BitAndAssignTraitLangItem, "bitand_assign", bitand_assign_trait;
BitOrAssignTraitLangItem, "bitor_assign", bitor_assign_trait;
ShlAssignTraitLangItem, "shl_assign", shl_assign_trait;
ShrAssignTraitLangItem, "shr_assign", shr_assign_trait;
IndexTraitLangItem, "index", index_trait;
IndexMutTraitLangItem, "index_mut", index_mut_trait;
RangeStructLangItem, "range", range_struct;

View File

@ -1049,7 +1049,20 @@ fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
}
}
hir::ExprAssignOp(op, ref dst, ref src) => {
trans_assign_op(bcx, expr, op, &**dst, &**src)
let has_method_map = bcx.tcx()
.tables
.borrow()
.method_map
.contains_key(&MethodCall::expr(expr.id));
if has_method_map {
let dst = unpack_datum!(bcx, trans(bcx, &**dst));
let src_datum = unpack_datum!(bcx, trans(bcx, &**src));
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), dst,
Some((src_datum, src.id)), None, false).bcx
} else {
trans_assign_op(bcx, expr, op, &**dst, &**src)
}
}
hir::ExprInlineAsm(ref a) => {
asm::trans_inline_asm(bcx, a)
@ -1238,8 +1251,11 @@ fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
// Trait casts used to come this way, now they should be coercions.
bcx.tcx().sess.span_bug(expr.span, "DPS expr_cast (residual trait cast?)")
}
hir::ExprAssignOp(op, ref dst, ref src) => {
trans_assign_op(bcx, expr, op, &**dst, &**src)
hir::ExprAssignOp(op, _, _) => {
bcx.tcx().sess.span_bug(
expr.span,
&format!("augmented assignment `{}=` should always be a rvalue_stmt",
rustc_front::util::binop_to_string(op.node)))
}
_ => {
bcx.tcx().sess.span_bug(

View File

@ -17,10 +17,8 @@ use super::{
demand,
method,
FnCtxt,
structurally_resolved_type,
};
use middle::def_id::DefId;
use middle::traits;
use middle::ty::{Ty, HasTypeFlags, PreferMutLvalue};
use syntax::ast;
use syntax::parse::token;
@ -34,34 +32,24 @@ pub fn check_binop_assign<'a,'tcx>(fcx: &FnCtxt<'a,'tcx>,
lhs_expr: &'tcx hir::Expr,
rhs_expr: &'tcx hir::Expr)
{
let tcx = fcx.ccx.tcx;
check_expr_with_lvalue_pref(fcx, lhs_expr, PreferMutLvalue);
check_expr(fcx, rhs_expr);
let lhs_ty = structurally_resolved_type(fcx, lhs_expr.span, fcx.expr_ty(lhs_expr));
let rhs_ty = structurally_resolved_type(fcx, rhs_expr.span, fcx.expr_ty(rhs_expr));
let lhs_ty = fcx.resolve_type_vars_if_possible(fcx.expr_ty(lhs_expr));
let (rhs_ty, return_ty) =
check_overloaded_binop(fcx, expr, lhs_expr, lhs_ty, rhs_expr, op, IsAssign::Yes);
let rhs_ty = fcx.resolve_type_vars_if_possible(rhs_ty);
if is_builtin_binop(lhs_ty, rhs_ty, op) {
if !lhs_ty.is_ty_var() && !rhs_ty.is_ty_var() && is_builtin_binop(lhs_ty, rhs_ty, op) {
enforce_builtin_binop_types(fcx, lhs_expr, lhs_ty, rhs_expr, rhs_ty, op);
fcx.write_nil(expr.id);
} else {
// error types are considered "builtin"
assert!(!lhs_ty.references_error() || !rhs_ty.references_error());
span_err!(tcx.sess, lhs_expr.span, E0368,
"binary assignment operation `{}=` cannot be applied to types `{}` and `{}`",
hir_util::binop_to_string(op.node),
lhs_ty,
rhs_ty);
fcx.write_error(expr.id);
fcx.write_ty(expr.id, return_ty);
}
let tcx = fcx.tcx();
if !tcx.expr_is_lval(lhs_expr) {
span_err!(tcx.sess, lhs_expr.span, E0067, "invalid left-hand side expression");
}
fcx.require_expr_have_sized_type(lhs_expr, traits::AssignmentLhsSized);
}
/// Check a potentially overloaded binary operator.
@ -95,7 +83,7 @@ pub fn check_binop<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
// overloaded. This is the way to be most flexible w/r/t
// types that get inferred.
let (rhs_ty, return_ty) =
check_overloaded_binop(fcx, expr, lhs_expr, lhs_ty, rhs_expr, op);
check_overloaded_binop(fcx, expr, lhs_expr, lhs_ty, rhs_expr, op, IsAssign::No);
// Supply type inference hints if relevant. Probably these
// hints should be enforced during select as part of the
@ -167,14 +155,16 @@ fn check_overloaded_binop<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
lhs_expr: &'tcx hir::Expr,
lhs_ty: Ty<'tcx>,
rhs_expr: &'tcx hir::Expr,
op: hir::BinOp)
op: hir::BinOp,
is_assign: IsAssign)
-> (Ty<'tcx>, Ty<'tcx>)
{
debug!("check_overloaded_binop(expr.id={}, lhs_ty={:?})",
debug!("check_overloaded_binop(expr.id={}, lhs_ty={:?}, is_assign={:?})",
expr.id,
lhs_ty);
lhs_ty,
is_assign);
let (name, trait_def_id) = name_and_trait_def_id(fcx, op);
let (name, trait_def_id) = name_and_trait_def_id(fcx, op, is_assign);
// NB: As we have not yet type-checked the RHS, we don't have the
// type at hand. Make a variable to represent it. The whole reason
@ -191,10 +181,17 @@ fn check_overloaded_binop<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
Err(()) => {
// error types are considered "builtin"
if !lhs_ty.references_error() {
span_err!(fcx.tcx().sess, lhs_expr.span, E0369,
"binary operation `{}` cannot be applied to type `{}`",
hir_util::binop_to_string(op.node),
lhs_ty);
if let IsAssign::Yes = is_assign {
span_err!(fcx.tcx().sess, lhs_expr.span, E0368,
"binary assignment operation `{}=` cannot be applied to type `{}`",
hir_util::binop_to_string(op.node),
lhs_ty);
} else {
span_err!(fcx.tcx().sess, lhs_expr.span, E0369,
"binary operation `{}` cannot be applied to type `{}`",
hir_util::binop_to_string(op.node),
lhs_ty);
}
}
fcx.tcx().types.err
}
@ -231,27 +228,51 @@ pub fn check_user_unop<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
}
}
fn name_and_trait_def_id(fcx: &FnCtxt, op: hir::BinOp) -> (&'static str, Option<DefId>) {
fn name_and_trait_def_id(fcx: &FnCtxt,
op: hir::BinOp,
is_assign: IsAssign)
-> (&'static str, Option<DefId>) {
let lang = &fcx.tcx().lang_items;
match op.node {
hir::BiAdd => ("add", lang.add_trait()),
hir::BiSub => ("sub", lang.sub_trait()),
hir::BiMul => ("mul", lang.mul_trait()),
hir::BiDiv => ("div", lang.div_trait()),
hir::BiRem => ("rem", lang.rem_trait()),
hir::BiBitXor => ("bitxor", lang.bitxor_trait()),
hir::BiBitAnd => ("bitand", lang.bitand_trait()),
hir::BiBitOr => ("bitor", lang.bitor_trait()),
hir::BiShl => ("shl", lang.shl_trait()),
hir::BiShr => ("shr", lang.shr_trait()),
hir::BiLt => ("lt", lang.ord_trait()),
hir::BiLe => ("le", lang.ord_trait()),
hir::BiGe => ("ge", lang.ord_trait()),
hir::BiGt => ("gt", lang.ord_trait()),
hir::BiEq => ("eq", lang.eq_trait()),
hir::BiNe => ("ne", lang.eq_trait()),
hir::BiAnd | hir::BiOr => {
fcx.tcx().sess.span_bug(op.span, "&& and || are not overloadable")
if let IsAssign::Yes = is_assign {
match op.node {
hir::BiAdd => ("add_assign", lang.add_assign_trait()),
hir::BiSub => ("sub_assign", lang.sub_assign_trait()),
hir::BiMul => ("mul_assign", lang.mul_assign_trait()),
hir::BiDiv => ("div_assign", lang.div_assign_trait()),
hir::BiRem => ("rem_assign", lang.rem_assign_trait()),
hir::BiBitXor => ("bitxor_assign", lang.bitxor_assign_trait()),
hir::BiBitAnd => ("bitand_assign", lang.bitand_assign_trait()),
hir::BiBitOr => ("bitor_assign", lang.bitor_assign_trait()),
hir::BiShl => ("shl_assign", lang.shl_assign_trait()),
hir::BiShr => ("shr_assign", lang.shr_assign_trait()),
hir::BiLt | hir::BiLe | hir::BiGe | hir::BiGt | hir::BiEq | hir::BiNe | hir::BiAnd |
hir::BiOr => {
fcx.tcx().sess.span_bug(op.span, &format!("impossible assignment operation: {}=",
hir_util::binop_to_string(op.node)))
}
}
} else {
match op.node {
hir::BiAdd => ("add", lang.add_trait()),
hir::BiSub => ("sub", lang.sub_trait()),
hir::BiMul => ("mul", lang.mul_trait()),
hir::BiDiv => ("div", lang.div_trait()),
hir::BiRem => ("rem", lang.rem_trait()),
hir::BiBitXor => ("bitxor", lang.bitxor_trait()),
hir::BiBitAnd => ("bitand", lang.bitand_trait()),
hir::BiBitOr => ("bitor", lang.bitor_trait()),
hir::BiShl => ("shl", lang.shl_trait()),
hir::BiShr => ("shr", lang.shr_trait()),
hir::BiLt => ("lt", lang.ord_trait()),
hir::BiLe => ("le", lang.ord_trait()),
hir::BiGe => ("ge", lang.ord_trait()),
hir::BiGt => ("gt", lang.ord_trait()),
hir::BiEq => ("eq", lang.eq_trait()),
hir::BiNe => ("ne", lang.eq_trait()),
hir::BiAnd | hir::BiOr => {
fcx.tcx().sess.span_bug(op.span, "&& and || are not overloadable")
}
}
}
}
@ -362,6 +383,13 @@ impl BinOpCategory {
}
}
/// Whether the binary operation is an assignment (`a += b`), or not (`a + b`)
#[derive(Clone, Copy, Debug)]
enum IsAssign {
No,
Yes,
}
/// Returns true if this is a built-in arithmetic operation (e.g. u32
/// + u32, i16x4 == i16x4) and false if these types would have to be
/// overloaded to be legal. There are two reasons that we distinguish

View File

@ -695,7 +695,7 @@ fn visit_expr(rcx: &mut Rcx, expr: &hir::Expr) {
hir::ExprAssignOp(_, ref lhs, ref rhs) => {
if has_method_map {
constrain_call(rcx, expr, Some(&**lhs),
Some(&**rhs).into_iter(), true);
Some(&**rhs).into_iter(), false);
}
visit::walk_expr(rcx, expr);

View File

@ -17,7 +17,7 @@ use astconv::AstConv;
use check::FnCtxt;
use middle::def_id::DefId;
use middle::pat_util;
use middle::ty::{self, Ty, MethodCall, MethodCallee};
use middle::ty::{self, Ty, MethodCall, MethodCallee, HasTypeFlags};
use middle::ty::adjustment;
use middle::ty::fold::{TypeFolder,TypeFoldable};
use middle::infer;
@ -91,24 +91,53 @@ impl<'cx, 'tcx> WritebackCx<'cx, 'tcx> {
// we observe that something like `a+b` is (known to be)
// operating on scalars, we clear the overload.
fn fix_scalar_binary_expr(&mut self, e: &hir::Expr) {
if let hir::ExprBinary(ref op, ref lhs, ref rhs) = e.node {
let lhs_ty = self.fcx.node_ty(lhs.id);
let lhs_ty = self.fcx.infcx().resolve_type_vars_if_possible(&lhs_ty);
match e.node {
hir::ExprBinary(ref op, ref lhs, ref rhs) |
hir::ExprAssignOp(ref op, ref lhs, ref rhs) => {
let lhs_ty = self.fcx.node_ty(lhs.id);
let lhs_ty = self.fcx.infcx().resolve_type_vars_if_possible(&lhs_ty);
let rhs_ty = self.fcx.node_ty(rhs.id);
let rhs_ty = self.fcx.infcx().resolve_type_vars_if_possible(&rhs_ty);
let rhs_ty = self.fcx.node_ty(rhs.id);
let rhs_ty = self.fcx.infcx().resolve_type_vars_if_possible(&rhs_ty);
if lhs_ty.is_scalar() && rhs_ty.is_scalar() {
self.fcx.inh.tables.borrow_mut().method_map.remove(&MethodCall::expr(e.id));
if lhs_ty.is_scalar() && rhs_ty.is_scalar() {
self.fcx.inh.tables.borrow_mut().method_map.remove(&MethodCall::expr(e.id));
// weird but true: the by-ref binops put an
// adjustment on the lhs but not the rhs; the
// adjustment for rhs is kind of baked into the
// system.
if !hir_util::is_by_value_binop(op.node) {
self.fcx.inh.tables.borrow_mut().adjustments.remove(&lhs.id);
// weird but true: the by-ref binops put an
// adjustment on the lhs but not the rhs; the
// adjustment for rhs is kind of baked into the
// system.
match e.node {
hir::ExprBinary(..) => {
if !hir_util::is_by_value_binop(op.node) {
self.fcx.inh.tables.borrow_mut().adjustments.remove(&lhs.id);
}
},
hir::ExprAssignOp(..) => {
self.fcx.inh.tables.borrow_mut().adjustments.remove(&lhs.id);
},
_ => {},
}
} else {
let tcx = self.tcx();
if let hir::ExprAssignOp(..) = e.node {
if
!tcx.sess.features.borrow().augmented_assignments &&
!self.fcx.expr_ty(e).references_error()
{
tcx.sess.span_err(
e.span,
"overloaded augmented assignments are not stable");
fileline_help!(
tcx.sess, e.span,
"add #![feature(augmented_assignments)] to the crate features \
to enable");
}
}
}
}
_ => {},
}
}
}

View File

@ -2862,14 +2862,27 @@ impl <T: Foo> Drop for MyStructWrapper<T> {
E0368: r##"
This error indicates that a binary assignment operator like `+=` or `^=` was
applied to the wrong types. For example:
applied to a type that doesn't support it. For example:
```
let mut x: u16 = 5;
x ^= true; // error, `^=` cannot be applied to types `u16` and `bool`
x += (); // error, `+=` cannot be applied to types `u16` and `()`
let mut x = 12f32; // error: binary operation `<<` cannot be applied to
// type `f32`
x <<= 2;
```
To fix this error, please check that this type implements this binary
operation. Example:
```
let x = 12u32; // the `u32` type does implement the `ShlAssign` trait
x <<= 2; // ok!
```
It is also possible to overload most operators for your own type by
implementing the `[OP]Assign` traits from `std::ops`.
Another problem you might be facing is this: suppose you've overloaded the `+`
operator for some type `Foo` by implementing the `std::ops::Add` trait for
`Foo`, but you find that using `+=` does not work, as in this example:
@ -2889,15 +2902,12 @@ impl Add for Foo {
fn main() {
let mut x: Foo = Foo(5);
x += Foo(7); // error, `+= cannot be applied to types `Foo` and `Foo`
x += Foo(7); // error, `+= cannot be applied to the type `Foo`
}
```
This is because the binary assignment operators currently do not work off of
traits, so it is not possible to overload them. See [RFC 953] for a proposal
to change this.
[RFC 953]: https://github.com/rust-lang/rfcs/pull/953
This is because `AddAssign` is not automatically implemented, so you need to
manually implement it for your type.
"##,
E0369: r##"

View File

@ -194,6 +194,9 @@ const KNOWN_FEATURES: &'static [(&'static str, &'static str, Option<u32>, Status
// allow empty structs/enum variants with braces
("braced_empty_structs", "1.5.0", None, Active),
// allow overloading augmented assignment operations like `a += b`
("augmented_assignments", "1.5.0", None, Active),
];
// (changing above list without updating src/doc/reference.md makes @cmr sad)
@ -457,6 +460,7 @@ pub struct Features {
pub default_type_parameter_fallback: bool,
pub type_macros: bool,
pub cfg_target_feature: bool,
pub augmented_assignments: bool,
}
impl Features {
@ -485,6 +489,7 @@ impl Features {
default_type_parameter_fallback: false,
type_macros: false,
cfg_target_feature: false,
augmented_assignments: false,
}
}
}
@ -1053,6 +1058,7 @@ fn check_crate_inner<F>(cm: &CodeMap, span_handler: &SpanHandler,
default_type_parameter_fallback: cx.has_feature("default_type_parameter_fallback"),
type_macros: cx.has_feature("type_macros"),
cfg_target_feature: cx.has_feature("cfg_target_feature"),
augmented_assignments: cx.has_feature("augmented_assignments"),
}
}

View File

@ -0,0 +1,22 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(augmented_assignments)]
#![feature(op_assign_traits)]
use std::ops::AddAssign;
pub struct Int(i32);
impl AddAssign<i32> for Int {
fn add_assign(&mut self, _: i32) {
unimplemented!();
}
}

View File

@ -13,5 +13,5 @@ struct Foo;
fn main() {
let mut a = Foo;
let ref b = Foo;
a += *b; //~ Error: binary assignment operation `+=` cannot be applied to types `Foo` and `Foo`
a += *b; //~ Error: binary assignment operation `+=` cannot be applied to type `Foo`
}

View File

@ -0,0 +1,25 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// aux-build:augmented_assignments.rs
// Test that the feature gate is needed when using augmented assignments that were overloaded in
// another crate
extern crate augmented_assignments;
use augmented_assignments::Int;
fn main() {
let mut x = Int(0);
x += 1;
//~^ error: overloaded augmented assignments are not stable
// | help: add #![feature(augmented_assignments)] to the crate features to enable
}

View File

@ -0,0 +1,26 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::ops::AddAssign;
struct Int(i32);
impl AddAssign<i32> for Int {
fn add_assign(&mut self, _: i32) {
unimplemented!()
}
}
fn main() {
let mut x = Int(0);
x += 1;
//~^ error: overloaded augmented assignments are not stable
// | help: add #![feature(augmented_assignments)] to the crate features to enable
}

View File

@ -0,0 +1,24 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::ops::AddAssign;
//~^ error: use of unstable library feature 'op_assign_traits'
struct Int(i32);
impl AddAssign for Int {
//~^ error: use of unstable library feature 'op_assign_traits'
fn add_assign(&mut self, _: Int) {
//~^ error: use of unstable library feature 'op_assign_traits'
unimplemented!()
}
}
fn main() {}

View File

@ -0,0 +1,33 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(augmented_assignments)]
use std::ops::AddAssign;
struct Int(i32);
impl AddAssign for Int {
fn add_assign(&mut self, _: Int) {
unimplemented!()
}
}
fn main() {
let mut x = Int(1);
x //~ error: use of moved value: `x`
+=
x; //~ note: `x` moved here because it has type `Int`, which is non-copyable
let y = Int(2);
y //~ error: cannot borrow immutable local variable `y` as mutable
+=
Int(1);
}

View File

@ -0,0 +1,164 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(augmented_assignments)]
#![feature(op_assign_traits)]
use std::mem;
use std::ops::{
AddAssign, BitAndAssign, BitOrAssign, BitXorAssign, DivAssign, Index, MulAssign, RemAssign,
ShlAssign, ShrAssign, SubAssign,
};
#[derive(Debug, PartialEq)]
struct Int(i32);
struct Slice([i32]);
impl Slice {
fn new(slice: &mut [i32]) -> &mut Slice {
unsafe {
mem::transmute(slice)
}
}
}
fn main() {
let mut x = Int(1);
x += Int(2);
assert_eq!(x, Int(0b11));
x &= Int(0b01);
assert_eq!(x, Int(0b01));
x |= Int(0b10);
assert_eq!(x, Int(0b11));
x ^= Int(0b01);
assert_eq!(x, Int(0b10));
x /= Int(2);
assert_eq!(x, Int(1));
x *= Int(3);
assert_eq!(x, Int(3));
x %= Int(2);
assert_eq!(x, Int(1));
// overloaded RHS
x <<= 1u8;
assert_eq!(x, Int(2));
x <<= 1u16;
assert_eq!(x, Int(4));
x >>= 1u8;
assert_eq!(x, Int(2));
x >>= 1u16;
assert_eq!(x, Int(1));
x -= Int(1);
assert_eq!(x, Int(0));
// indexed LHS
let mut v = vec![Int(1), Int(2)];
v[0] += Int(2);
assert_eq!(v[0], Int(3));
// unsized RHS
let mut array = [0, 1, 2];
*Slice::new(&mut array) += 1;
assert_eq!(array[0], 1);
assert_eq!(array[1], 2);
assert_eq!(array[2], 3);
}
impl AddAssign for Int {
fn add_assign(&mut self, rhs: Int) {
self.0 += rhs.0;
}
}
impl BitAndAssign for Int {
fn bitand_assign(&mut self, rhs: Int) {
self.0 &= rhs.0;
}
}
impl BitOrAssign for Int {
fn bitor_assign(&mut self, rhs: Int) {
self.0 |= rhs.0;
}
}
impl BitXorAssign for Int {
fn bitxor_assign(&mut self, rhs: Int) {
self.0 ^= rhs.0;
}
}
impl DivAssign for Int {
fn div_assign(&mut self, rhs: Int) {
self.0 /= rhs.0;
}
}
impl MulAssign for Int {
fn mul_assign(&mut self, rhs: Int) {
self.0 *= rhs.0;
}
}
impl RemAssign for Int {
fn rem_assign(&mut self, rhs: Int) {
self.0 %= rhs.0;
}
}
impl ShlAssign<u8> for Int {
fn shl_assign(&mut self, rhs: u8) {
self.0 <<= rhs;
}
}
impl ShlAssign<u16> for Int {
fn shl_assign(&mut self, rhs: u16) {
self.0 <<= rhs;
}
}
impl ShrAssign<u8> for Int {
fn shr_assign(&mut self, rhs: u8) {
self.0 >>= rhs;
}
}
impl ShrAssign<u16> for Int {
fn shr_assign(&mut self, rhs: u16) {
self.0 >>= rhs;
}
}
impl SubAssign for Int {
fn sub_assign(&mut self, rhs: Int) {
self.0 -= rhs.0;
}
}
impl AddAssign<i32> for Slice {
fn add_assign(&mut self, rhs: i32) {
for lhs in &mut self.0 {
*lhs += rhs;
}
}
}