Rollup merge of #24245 - nikomatsakis:issue-24241-coherence-failure, r=pnkfelix

Don't use skolemized parameters but rather fresh variables in coherence. Skolemized parameters wind up preventing unification. Surprised we had no test for this! Fixes #24241.

r? @pnkfelix
This commit is contained in:
Manish Goregaokar 2015-04-11 19:04:22 +05:30
commit 83093a2c98
3 changed files with 49 additions and 50 deletions

View File

@ -26,7 +26,7 @@ use syntax::codemap::{DUMMY_SP, Span};
use util::ppaux::Repr;
#[derive(Copy, Clone)]
struct ParamIsLocal(bool);
struct InferIsLocal(bool);
/// True if there exist types that satisfy both of the two given impls.
pub fn overlapping_impls(infcx: &InferCtxt,
@ -60,7 +60,7 @@ fn overlap(selcx: &mut SelectionContext,
let (a_trait_ref, a_obligations) = impl_trait_ref_and_oblig(selcx,
a_def_id,
util::free_substs_for_impl);
util::fresh_type_vars_for_impl);
let (b_trait_ref, b_obligations) = impl_trait_ref_and_oblig(selcx,
b_def_id,
@ -104,7 +104,7 @@ pub fn trait_ref_is_knowable<'tcx>(tcx: &ty::ctxt<'tcx>, trait_ref: &ty::TraitRe
// if the orphan rules pass, that means that no ancestor crate can
// impl this, so it's up to us.
if orphan_check_trait_ref(tcx, trait_ref, ParamIsLocal(false)).is_ok() {
if orphan_check_trait_ref(tcx, trait_ref, InferIsLocal(false)).is_ok() {
debug!("trait_ref_is_knowable: orphan check passed");
return true;
}
@ -126,7 +126,7 @@ pub fn trait_ref_is_knowable<'tcx>(tcx: &ty::ctxt<'tcx>, trait_ref: &ty::TraitRe
// implemented by an upstream crate, which means that the impl
// must be visible to us, and -- since the trait is fundamental
// -- we can test.
orphan_check_trait_ref(tcx, trait_ref, ParamIsLocal(true)).is_err()
orphan_check_trait_ref(tcx, trait_ref, InferIsLocal(true)).is_err()
}
type SubstsFn = for<'a,'tcx> fn(infcx: &InferCtxt<'a, 'tcx>,
@ -196,16 +196,16 @@ pub fn orphan_check<'tcx>(tcx: &ty::ctxt<'tcx>,
return Ok(());
}
orphan_check_trait_ref(tcx, &trait_ref, ParamIsLocal(false))
orphan_check_trait_ref(tcx, &trait_ref, InferIsLocal(false))
}
fn orphan_check_trait_ref<'tcx>(tcx: &ty::ctxt<'tcx>,
trait_ref: &ty::TraitRef<'tcx>,
param_is_local: ParamIsLocal)
infer_is_local: InferIsLocal)
-> Result<(), OrphanCheckErr<'tcx>>
{
debug!("orphan_check_trait_ref(trait_ref={}, param_is_local={})",
trait_ref.repr(tcx), param_is_local.0);
debug!("orphan_check_trait_ref(trait_ref={}, infer_is_local={})",
trait_ref.repr(tcx), infer_is_local.0);
// First, create an ordered iterator over all the type parameters to the trait, with the self
// type appearing first.
@ -215,12 +215,12 @@ fn orphan_check_trait_ref<'tcx>(tcx: &ty::ctxt<'tcx>,
// Find the first input type that either references a type parameter OR
// some local type.
for input_ty in input_tys {
if ty_is_local(tcx, input_ty, param_is_local) {
if ty_is_local(tcx, input_ty, infer_is_local) {
debug!("orphan_check_trait_ref: ty_is_local `{}`", input_ty.repr(tcx));
// First local input type. Check that there are no
// uncovered type parameters.
let uncovered_tys = uncovered_tys(tcx, input_ty, param_is_local);
let uncovered_tys = uncovered_tys(tcx, input_ty, infer_is_local);
for uncovered_ty in uncovered_tys {
if let Some(param) = uncovered_ty.walk().find(|t| is_type_parameter(t)) {
debug!("orphan_check_trait_ref: uncovered type `{}`", param.repr(tcx));
@ -234,7 +234,7 @@ fn orphan_check_trait_ref<'tcx>(tcx: &ty::ctxt<'tcx>,
// Otherwise, enforce invariant that there are no type
// parameters reachable.
if !param_is_local.0 {
if !infer_is_local.0 {
if let Some(param) = input_ty.walk().find(|t| is_type_parameter(t)) {
debug!("orphan_check_trait_ref: uncovered type `{}`", param.repr(tcx));
return Err(OrphanCheckErr::UncoveredTy(param));
@ -249,14 +249,14 @@ fn orphan_check_trait_ref<'tcx>(tcx: &ty::ctxt<'tcx>,
fn uncovered_tys<'tcx>(tcx: &ty::ctxt<'tcx>,
ty: Ty<'tcx>,
param_is_local: ParamIsLocal)
infer_is_local: InferIsLocal)
-> Vec<Ty<'tcx>>
{
if ty_is_local_constructor(tcx, ty, param_is_local) {
if ty_is_local_constructor(tcx, ty, infer_is_local) {
vec![]
} else if fundamental_ty(tcx, ty) {
ty.walk_shallow()
.flat_map(|t| uncovered_tys(tcx, t, param_is_local).into_iter())
.flat_map(|t| uncovered_tys(tcx, t, infer_is_local).into_iter())
.collect()
} else {
vec![ty]
@ -271,10 +271,10 @@ fn is_type_parameter<'tcx>(ty: Ty<'tcx>) -> bool {
}
}
fn ty_is_local<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>, param_is_local: ParamIsLocal) -> bool
fn ty_is_local<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>, infer_is_local: InferIsLocal) -> bool
{
ty_is_local_constructor(tcx, ty, param_is_local) ||
fundamental_ty(tcx, ty) && ty.walk_shallow().any(|t| ty_is_local(tcx, t, param_is_local))
ty_is_local_constructor(tcx, ty, infer_is_local) ||
fundamental_ty(tcx, ty) && ty.walk_shallow().any(|t| ty_is_local(tcx, t, infer_is_local))
}
fn fundamental_ty<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool
@ -293,7 +293,7 @@ fn fundamental_ty<'tcx>(tcx: &ty::ctxt<'tcx>, ty: Ty<'tcx>) -> bool
fn ty_is_local_constructor<'tcx>(tcx: &ty::ctxt<'tcx>,
ty: Ty<'tcx>,
param_is_local: ParamIsLocal)
infer_is_local: InferIsLocal)
-> bool
{
debug!("ty_is_local_constructor({})", ty.repr(tcx));
@ -310,13 +310,13 @@ fn ty_is_local_constructor<'tcx>(tcx: &ty::ctxt<'tcx>,
ty::ty_ptr(..) |
ty::ty_rptr(..) |
ty::ty_tup(..) |
ty::ty_infer(..) |
ty::ty_param(..) |
ty::ty_projection(..) => {
false
}
ty::ty_param(..) => {
param_is_local.0
ty::ty_infer(..) => {
infer_is_local.0
}
ty::ty_enum(def_id, _) |

View File

@ -8,7 +8,6 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::region;
use middle::subst::{Substs, VecPerParamSpace};
use middle::infer::InferCtxt;
use middle::ty::{self, Ty, AsPredicate, ToPolyTraitRef};
@ -304,34 +303,6 @@ pub fn fresh_type_vars_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
infcx.fresh_substs_for_generics(span, &impl_generics)
}
// determine the `self` type, using fresh variables for all variables
// declared on the impl declaration e.g., `impl<A,B> for Box<[(A,B)]>`
// would return ($0, $1) where $0 and $1 are freshly instantiated type
// variables.
pub fn free_substs_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
_span: Span,
impl_def_id: ast::DefId)
-> Substs<'tcx>
{
let tcx = infcx.tcx;
let impl_generics = ty::lookup_item_type(tcx, impl_def_id).generics;
let some_types = impl_generics.types.map(|def| {
ty::mk_param_from_def(tcx, def)
});
let some_regions = impl_generics.regions.map(|def| {
// FIXME. This destruction scope information is pretty darn
// bogus; after all, the impl might not even be in this crate!
// But given what we do in coherence, it is harmless enough
// for now I think. -nmatsakis
let extent = region::DestructionScopeData::new(ast::DUMMY_NODE_ID);
ty::free_region_from_def(extent, def)
});
Substs::new(some_types, some_regions)
}
impl<'tcx, N> fmt::Debug for VtableImplData<'tcx, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableImpl({:?})", self.impl_def_id)

View File

@ -0,0 +1,28 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Check that we detect an overlap here in the case where:
//
// for some type X:
// T = (X,)
// T11 = X, U11 = X
//
// Seems pretty basic, but then there was issue #24241. :)
trait From<U> {
}
impl <T> From<T> for T { //~ ERROR E0119
}
impl <T11, U11> From<(U11,)> for (T11,) {
}
fn main() { }