Add simple control-flow-graph abstraction based on graph, currently unused

This commit is contained in:
Niko Matsakis 2013-05-10 13:10:35 -04:00
parent a2fbe4d09a
commit 86b6e6e2f5
3 changed files with 586 additions and 0 deletions

View File

@ -0,0 +1,523 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::cfg::*;
use middle::graph;
use middle::typeck;
use middle::ty;
use std::hashmap::HashMap;
use syntax::ast;
use syntax::ast_util;
use syntax::opt_vec;
struct CFGBuilder {
tcx: ty::ctxt,
method_map: typeck::method_map,
exit_map: HashMap<ast::node_id, CFGIndex>,
graph: CFGGraph,
loop_scopes: ~[LoopScope],
}
struct LoopScope {
loop_id: ast::node_id, // id of loop/while node
continue_index: CFGIndex, // where to go on a `loop`
break_index: CFGIndex, // where to go on a `break
}
pub fn construct(tcx: ty::ctxt,
method_map: typeck::method_map,
blk: &ast::blk) -> CFG {
let mut cfg_builder = CFGBuilder {
exit_map: HashMap::new(),
graph: graph::Graph::new(),
tcx: tcx,
method_map: method_map,
loop_scopes: ~[]
};
let entry = cfg_builder.add_node(0, []);
let exit = cfg_builder.block(blk, entry);
let CFGBuilder {exit_map, graph, _} = cfg_builder;
CFG {exit_map: exit_map,
graph: graph,
entry: entry,
exit: exit}
}
impl CFGBuilder {
fn block(&mut self, blk: &ast::blk, pred: CFGIndex) -> CFGIndex {
let mut stmts_exit = pred;
for blk.node.stmts.iter().advance |&stmt| {
stmts_exit = self.stmt(stmt, stmts_exit);
}
let expr_exit = self.opt_expr(blk.node.expr, stmts_exit);
self.add_node(blk.node.id, [expr_exit])
}
fn stmt(&mut self, stmt: @ast::stmt, pred: CFGIndex) -> CFGIndex {
match stmt.node {
ast::stmt_decl(decl, _) => {
self.decl(decl, pred)
}
ast::stmt_expr(expr, _) | ast::stmt_semi(expr, _) => {
self.expr(expr, pred)
}
ast::stmt_mac(*) => {
self.tcx.sess.span_bug(stmt.span, "unexpanded macro");
}
}
}
fn decl(&mut self, decl: @ast::decl, pred: CFGIndex) -> CFGIndex {
match decl.node {
ast::decl_local(local) => {
let init_exit = self.opt_expr(local.node.init, pred);
self.pat(local.node.pat, init_exit)
}
ast::decl_item(_) => {
pred
}
}
}
fn pat(&mut self, pat: @ast::pat, pred: CFGIndex) -> CFGIndex {
match pat.node {
ast::pat_ident(_, _, None) |
ast::pat_enum(_, None) |
ast::pat_lit(*) |
ast::pat_range(*) |
ast::pat_wild => {
self.add_node(pat.id, [pred])
}
ast::pat_box(subpat) |
ast::pat_uniq(subpat) |
ast::pat_region(subpat) |
ast::pat_ident(_, _, Some(subpat)) => {
let subpat_exit = self.pat(subpat, pred);
self.add_node(pat.id, [subpat_exit])
}
ast::pat_enum(_, Some(ref subpats)) |
ast::pat_tup(ref subpats) => {
let pats_exit =
self.pats_all(subpats.iter().transform(|p| *p), pred);
self.add_node(pat.id, [pats_exit])
}
ast::pat_struct(_, ref subpats, _) => {
let pats_exit =
self.pats_all(subpats.iter().transform(|f| f.pat), pred);
self.add_node(pat.id, [pats_exit])
}
ast::pat_vec(ref pre, ref vec, ref post) => {
let pre_exit =
self.pats_all(pre.iter().transform(|p| *p), pred);
let vec_exit =
self.pats_all(vec.iter().transform(|p| *p), pre_exit);
let post_exit =
self.pats_all(post.iter().transform(|p| *p), vec_exit);
self.add_node(pat.id, [post_exit])
}
}
}
fn pats_all<I: Iterator<@ast::pat>>(&mut self,
pats: I,
pred: CFGIndex) -> CFGIndex {
//! Handles case where all of the patterns must match.
let mut pats = pats;
pats.fold(pred, |pred, pat| self.pat(pat, pred))
}
fn pats_any(&mut self,
pats: &[@ast::pat],
pred: CFGIndex) -> CFGIndex {
//! Handles case where just one of the patterns must match.
if pats.len() == 1 {
self.pat(pats[0], pred)
} else {
let collect = self.add_dummy_node([]);
for pats.iter().advance |&pat| {
let pat_exit = self.pat(pat, pred);
self.add_contained_edge(pat_exit, collect);
}
collect
}
}
fn expr(&mut self, expr: @ast::expr, pred: CFGIndex) -> CFGIndex {
match expr.node {
ast::expr_block(ref blk) => {
let blk_exit = self.block(blk, pred);
self.add_node(expr.id, [blk_exit])
}
ast::expr_if(cond, ref then, None) => {
//
// [pred]
// |
// v 1
// [cond]
// |
// / \
// / \
// v 2 *
// [then] |
// | |
// v 3 v 4
// [..expr..]
//
let cond_exit = self.expr(cond, pred); // 1
let then_exit = self.block(then, cond_exit); // 2
self.add_node(expr.id, [cond_exit, then_exit]) // 3,4
}
ast::expr_if(cond, ref then, Some(otherwise)) => {
//
// [pred]
// |
// v 1
// [cond]
// |
// / \
// / \
// v 2 v 3
// [then][otherwise]
// | |
// v 4 v 5
// [..expr..]
//
let cond_exit = self.expr(cond, pred); // 1
let then_exit = self.block(then, cond_exit); // 2
let else_exit = self.expr(otherwise, cond_exit); // 3
self.add_node(expr.id, [then_exit, else_exit]) // 4, 5
}
ast::expr_while(cond, ref body) => {
//
// [pred]
// |
// v 1
// [loopback] <--+ 5
// | |
// v 2 |
// +-----[cond] |
// | | |
// | v 4 |
// | [body] -----+
// v 3
// [expr]
//
// Note that `break` and `loop` statements
// may cause additional edges.
// NOTE: Is the condition considered part of the loop?
let loopback = self.add_dummy_node([pred]); // 1
let cond_exit = self.expr(cond, loopback); // 2
let expr_exit = self.add_node(expr.id, [cond_exit]); // 3
self.loop_scopes.push(LoopScope {
loop_id: expr.id,
continue_index: loopback,
break_index: expr_exit
});
let body_exit = self.block(body, cond_exit); // 4
self.add_contained_edge(body_exit, loopback); // 5
expr_exit
}
ast::expr_loop(ref body, _) => {
//
// [pred]
// |
// v 1
// [loopback] <---+
// | 4 |
// v 3 |
// [body] ------+
//
// [expr] 2
//
// Note that `break` and `loop` statements
// may cause additional edges.
let loopback = self.add_dummy_node([pred]); // 1
let expr_exit = self.add_node(expr.id, []); // 2
self.loop_scopes.push(LoopScope {
loop_id: expr.id,
continue_index: loopback,
break_index: expr_exit,
});
let body_exit = self.block(body, loopback); // 3
self.add_contained_edge(body_exit, loopback); // 4
self.loop_scopes.pop();
expr_exit
}
ast::expr_match(discr, ref arms) => {
//
// [pred]
// |
// v 1
// [discr]
// |
// v 2
// [guard1]
// / \
// | \
// v 3 |
// [pat1] |
// |
// v 4 |
// [body1] v
// | [guard2]
// | / \
// | [body2] \
// | | ...
// | | |
// v 5 v v
// [....expr....]
//
let discr_exit = self.expr(discr, pred); // 1
let expr_exit = self.add_node(expr.id, []);
let mut guard_exit = discr_exit;
for arms.iter().advance |arm| {
guard_exit = self.opt_expr(arm.guard, guard_exit); // 2
let pats_exit = self.pats_any(arm.pats, guard_exit); // 3
let body_exit = self.block(&arm.body, pats_exit); // 4
self.add_contained_edge(body_exit, expr_exit); // 5
}
expr_exit
}
ast::expr_binary(_, op, l, r) if ast_util::lazy_binop(op) => {
//
// [pred]
// |
// v 1
// [l]
// |
// / \
// / \
// v 2 *
// [r] |
// | |
// v 3 v 4
// [..exit..]
//
let l_exit = self.expr(l, pred); // 1
let r_exit = self.expr(r, l_exit); // 2
self.add_node(expr.id, [l_exit, r_exit]) // 3,4
}
ast::expr_ret(v) => {
let v_exit = self.opt_expr(v, pred);
let loop_scope = self.loop_scopes[0];
self.add_exiting_edge(expr, v_exit,
loop_scope, loop_scope.break_index);
self.add_node(expr.id, [])
}
ast::expr_break(label) => {
let loop_scope = self.find_scope(expr, label);
self.add_exiting_edge(expr, pred,
loop_scope, loop_scope.break_index);
self.add_node(expr.id, [])
}
ast::expr_again(label) => {
let loop_scope = self.find_scope(expr, label);
self.add_exiting_edge(expr, pred,
loop_scope, loop_scope.continue_index);
self.add_node(expr.id, [])
}
ast::expr_vec(ref elems, _) => {
self.straightline(expr, pred, *elems)
}
ast::expr_call(func, ref args, _) => {
self.call(expr, pred, func, *args)
}
ast::expr_method_call(_, rcvr, _, _, ref args, _) => {
self.call(expr, pred, rcvr, *args)
}
ast::expr_index(_, l, r) |
ast::expr_binary(_, _, l, r) if self.is_method_call(expr) => {
self.call(expr, pred, l, [r])
}
ast::expr_unary(_, _, e) if self.is_method_call(expr) => {
self.call(expr, pred, e, [])
}
ast::expr_tup(ref exprs) => {
self.straightline(expr, pred, *exprs)
}
ast::expr_struct(_, ref fields, base) => {
let base_exit = self.opt_expr(base, pred);
let field_exprs: ~[@ast::expr] =
fields.iter().transform(|f| f.node.expr).collect();
self.straightline(expr, base_exit, field_exprs)
}
ast::expr_repeat(elem, count, _) => {
self.straightline(expr, pred, [elem, count])
}
ast::expr_assign(l, r) |
ast::expr_assign_op(_, _, l, r) => {
self.straightline(expr, pred, [r, l])
}
ast::expr_log(l, r) |
ast::expr_index(_, l, r) |
ast::expr_binary(_, _, l, r) => { // NB: && and || handled earlier
self.straightline(expr, pred, [l, r])
}
ast::expr_addr_of(_, e) |
ast::expr_copy(e) |
ast::expr_loop_body(e) |
ast::expr_do_body(e) |
ast::expr_cast(e, _) |
ast::expr_unary(_, _, e) |
ast::expr_paren(e) |
ast::expr_vstore(e, _) |
ast::expr_field(e, _, _) => {
self.straightline(expr, pred, [e])
}
ast::expr_mac(*) |
ast::expr_inline_asm(*) |
ast::expr_self |
ast::expr_fn_block(*) |
ast::expr_lit(*) |
ast::expr_path(*) => {
self.straightline(expr, pred, [])
}
}
}
fn call(&mut self,
call_expr: @ast::expr,
pred: CFGIndex,
func_or_rcvr: @ast::expr,
args: &[@ast::expr]) -> CFGIndex {
let func_or_rcvr_exit = self.expr(func_or_rcvr, pred);
self.straightline(call_expr, func_or_rcvr_exit, args)
}
fn exprs(&mut self,
exprs: &[@ast::expr],
pred: CFGIndex) -> CFGIndex {
//! Constructs graph for `exprs` evaluated in order
exprs.iter().fold(pred, |p, &e| self.expr(e, p))
}
fn opt_expr(&mut self,
opt_expr: Option<@ast::expr>,
pred: CFGIndex) -> CFGIndex {
//! Constructs graph for `opt_expr` evaluated, if Some
opt_expr.iter().fold(pred, |p, &e| self.expr(e, p))
}
fn straightline(&mut self,
expr: @ast::expr,
pred: CFGIndex,
subexprs: &[@ast::expr]) -> CFGIndex {
//! Handles case of an expression that evaluates `subexprs` in order
let subexprs_exit = self.exprs(subexprs, pred);
self.add_node(expr.id, [subexprs_exit])
}
fn add_dummy_node(&mut self, preds: &[CFGIndex]) -> CFGIndex {
self.add_node(0, preds)
}
fn add_node(&mut self, id: ast::node_id, preds: &[CFGIndex]) -> CFGIndex {
assert!(!self.exit_map.contains_key(&id));
let node = self.graph.add_node(CFGNodeData {id: id});
self.exit_map.insert(id, node);
for preds.iter().advance |&pred| {
self.add_contained_edge(pred, node);
}
node
}
fn add_contained_edge(&mut self,
source: CFGIndex,
target: CFGIndex) {
let data = CFGEdgeData {exiting_scopes: opt_vec::Empty};
self.graph.add_edge(source, target, data);
}
fn add_exiting_edge(&mut self,
from_expr: @ast::expr,
from_index: CFGIndex,
to_loop: LoopScope,
to_index: CFGIndex) {
let mut data = CFGEdgeData {exiting_scopes: opt_vec::Empty};
let mut scope_id = from_expr.id;
while scope_id != to_loop.loop_id {
data.exiting_scopes.push(scope_id);
scope_id = self.tcx.region_maps.encl_scope(scope_id);
}
self.graph.add_edge(from_index, to_index, data);
}
fn find_scope(&self,
expr: @ast::expr,
label: Option<ast::ident>) -> LoopScope {
match label {
None => {
return *self.loop_scopes.last();
}
Some(_) => {
match self.tcx.def_map.find(&expr.id) {
Some(&ast::def_label(loop_id)) => {
for self.loop_scopes.iter().advance |l| {
if l.loop_id == loop_id {
return *l;
}
}
self.tcx.sess.span_bug(
expr.span,
fmt!("No loop scope for id %?", loop_id));
}
r => {
self.tcx.sess.span_bug(
expr.span,
fmt!("Bad entry `%?` in def_map for label", r));
}
}
}
}
}
fn is_method_call(&self, expr: &ast::expr) -> bool {
self.method_map.contains_key(&expr.id)
}
}

View File

@ -0,0 +1,61 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Module that constructs a control-flow graph representing an item.
Uses `Graph` as the underlying representation.
*/
use middle::graph;
use middle::ty;
use middle::typeck;
use std::hashmap::HashMap;
use syntax::ast;
use syntax::opt_vec::OptVec;
mod construct;
pub struct CFG {
exit_map: HashMap<ast::node_id, CFGIndex>,
graph: CFGGraph,
entry: CFGIndex,
exit: CFGIndex,
}
pub struct CFGNodeData {
id: ast::node_id
}
pub struct CFGEdgeData {
exiting_scopes: OptVec<ast::node_id>
}
pub type CFGIndex = graph::NodeIndex;
pub type CFGGraph = graph::Graph<CFGNodeData, CFGEdgeData>;
pub type CFGNode = graph::Node<CFGNodeData>;
pub type CFGEdge = graph::Edge<CFGEdgeData>;
pub struct CFGIndices {
entry: CFGIndex,
exit: CFGIndex,
}
impl CFG {
pub fn new(tcx: ty::ctxt,
method_map: typeck::method_map,
blk: &ast::blk) -> CFG {
construct::construct(tcx, method_map, blk)
}
}

View File

@ -75,6 +75,8 @@ pub mod middle {
pub mod effect;
pub mod reachable;
pub mod graph;
#[path = "cfg/mod.rs"]
pub mod cfg;
}
pub mod front {