Add shootout meteor contest benchmark.

This implementation of the meteor contest implements:
 - insertion check with bit trick;
 - pregenetation of every feasible placement of the pieces on the
   board;
 - filtering of placement that implies unfeasible board
 - central symetry breaking
This commit is contained in:
Guillaume Pinot 2013-11-14 09:11:33 +01:00
parent 314d6f693f
commit 89a9ce0cc6

View File

@ -0,0 +1,285 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// Utilities.
//
// returns an infinite iterator of repeated applications of f to x,
// i.e. [x, f(x), f(f(x)), ...], as haskell iterate function.
fn iterate<'a, T>(f: &'a fn(&T) -> T, x: T) -> Iterate<'a, T> {
Iterate::new(f, x)
}
struct Iterate<'self, T> {
priv f: &'self fn(&T) -> T,
priv next: T
}
impl<'self, T> Iterate<'self, T> {
fn new<'a>(f: &'a fn(&T) -> T, x: T) -> Iterate<'a, T> {
Iterate {f: f, next: x}
}
}
impl<'self, T> Iterator<T> for Iterate<'self, T> {
fn next(&mut self) -> Option<T> {
let mut res = (self.f)(&self.next);
std::util::swap(&mut res, &mut self.next);
Some(res)
}
}
// a linked list using borrowed next.
enum List<'self, T> {
Nil,
Cons(T, &'self List<'self, T>)
}
struct ListIterator<'self, T> {
priv cur: &'self List<'self, T>
}
impl<'self, T> List<'self, T> {
fn iter(&'self self) -> ListIterator<'self, T> {
ListIterator{cur: self}
}
}
impl<'self, T> Iterator<&'self T> for ListIterator<'self, T> {
fn next(&mut self) -> Option<&'self T> {
match *self.cur {
Nil => None,
Cons(ref elt, next) => {
self.cur = next;
Some(elt)
}
}
}
}
//
// preprocess
//
// Takes a pieces p on the form [(y1, x1), (y2, x2), ...] and returns
// every possible transformations (the 6 rotations with their
// corresponding mirrored piece), with, as minimum coordinates, (0,
// 0). If all is false, only generate half of the possibilities (used
// to break the symetry of the board).
fn transform(p: ~[(int, int)], all: bool) -> ~[~[(int, int)]] {
let mut res =
// rotations
iterate(|p| p.iter().map(|&(y, x)| (x + y, -y)).collect(), p)
.take(if all {6} else {3})
// mirror
.flat_map(|p| {
iterate(|p| p.iter().map(|&(y, x)| (x, y)).collect(), p).take(2)
}).to_owned_vec();
// translating to (0, 0) as minimum coordinates.
for p in res.mut_iter() {
let (dy, dx) = *p.iter().min_by(|e| *e).unwrap();
for &(ref mut y, ref mut x) in p.mut_iter() {
*y -= dy; *x -= dx;
}
}
res
}
// A mask is a piece somewere on the board. It is represented as a
// u64: for i in the first 50 bits, m[i] = 1 if the cell at (i/5, i%5)
// is occuped. m[50 + id] = 1 if the identifier of the piece is id.
// Takes a piece with minimum coordinate (0, 0) (as generated by
// transform). Returns the corresponding mask if p translated by (dy,
// dx) is on the board.
fn mask(dy: int, dx: int, id: uint, p: &[(int, int)]) -> Option<u64> {
let mut m = 1 << (50 + id);
for &(y, x) in p.iter() {
let x = x + dx + (y + (dy % 2)) / 2;
if x < 0 || x > 4 {return None;}
let y = y + dy;
if y < 0 || y > 9 {return None;}
m |= 1 << (y * 5 + x);
}
Some(m)
}
// Makes every possible masks. masks[id][i] correspond to every
// possible masks for piece with identifier id with minimum coordinate
// (i/5, i%5).
fn make_masks() -> ~[~[~[u64]]] {
let pieces = ~[
~[(0,0),(0,1),(0,2),(0,3),(1,3)],
~[(0,0),(0,2),(0,3),(1,0),(1,1)],
~[(0,0),(0,1),(0,2),(1,2),(2,1)],
~[(0,0),(0,1),(0,2),(1,1),(2,1)],
~[(0,0),(0,2),(1,0),(1,1),(2,1)],
~[(0,0),(0,1),(0,2),(1,1),(1,2)],
~[(0,0),(0,1),(1,1),(1,2),(2,1)],
~[(0,0),(0,1),(0,2),(1,0),(1,2)],
~[(0,0),(0,1),(0,2),(1,2),(1,3)],
~[(0,0),(0,1),(0,2),(0,3),(1,2)]];
let mut res = ~[];
for (id, p) in pieces.move_iter().enumerate() {
// To break the central symetry of the problem, every
// transformation must be taken except for one piece (piece 3
// here).
let trans = transform(p, id != 3);
let mut cur_piece = ~[];
for dy in range(0, 10) {
for dx in range(0, 5) {
let masks =
trans.iter()
.filter_map(|t| mask(dy, dx, id, *t))
.collect();
cur_piece.push(masks);
}
}
res.push(cur_piece);
}
res
}
// Check if all coordinates can be covered by an unused piece and that
// all unused piece can be placed on the board.
fn is_board_unfeasible(board: u64, masks: &[~[~[u64]]]) -> bool {
let mut coverable = board;
for i in range(0, 50).filter(|&i| board & 1 << i == 0) {
for (cur_id, pos_masks) in masks.iter().enumerate() {
if board & 1 << (50 + cur_id) != 0 {continue;}
for &cur_m in pos_masks[i].iter() {
if cur_m & board == 0 {coverable |= cur_m;}
}
}
if coverable & (1 << i) == 0 {return true;}
}
// check if every coordinates can be covered and every piece can
// be used.
coverable != (1 << 60) - 1
}
// Filter the masks that we can prove to result to unfeasible board.
fn filter_masks(masks: &[~[~[u64]]]) -> ~[~[~[u64]]] {
masks.iter().map(
|p| p.iter().map(
|p| p.iter()
.map(|&m| m)
.filter(|&m| !is_board_unfeasible(m, masks))
.collect())
.collect())
.collect()
}
// Gets the identifier of a mask.
fn get_id(m: u64) -> u8 {
for id in range(0, 10) {
if m & (1 << (id + 50)) != 0 {return id as u8;}
}
fail!("{:016x} does not have a valid identifier", m);
}
// Converts a list of mask to a ~str.
fn to_utf8(raw_sol: &List<u64>) -> ~str {
let mut sol: ~[u8] = std::vec::from_elem(50, '.' as u8);
for &m in raw_sol.iter() {
let id = get_id(m);
for i in range(0, 50) {
if m & 1 << i != 0 {sol[i] = '0' as u8 + id;}
}
}
std::str::from_utf8_owned(sol)
}
// Prints a solution in ~str form.
fn print_sol(sol: &str) {
for (i, c) in sol.iter().enumerate() {
if (i) % 5 == 0 {println("");}
if (i + 5) % 10 == 0 {print(" ");}
print!("{} ", c);
}
println("");
}
// The data managed during the search
struct Data {
// If more than stop_after is found, stop the search.
stop_after: int,
// Number of solution found.
nb: int,
// Lexicographically minimal solution found.
min: ~str,
// Lexicographically maximal solution found.
max: ~str
}
// Records a new found solution. Returns false if the search must be
// stopped.
fn handle_sol(raw_sol: &List<u64>, data: &mut Data) -> bool {
// because we break the symetry, 2 solutions correspond to a call
// to this method: the normal solution, and the same solution in
// reverse order, i.e. the board rotated by half a turn.
data.nb += 2;
let sol1 = to_utf8(raw_sol);
let sol2: ~str = sol1.iter().invert().collect();
if data.nb == 2 {
data.min = sol1.clone();
data.max = sol1.clone();
}
if sol1 < data.min {data.min = sol1.clone();}
if sol2 < data.min {data.min = sol2.clone();}
if sol1 > data.max {data.max = sol1;}
if sol2 > data.max {data.max = sol2;}
data.nb < data.stop_after
}
// Search for every solutions. Returns false if the search was
// stopped before the end.
fn search(
masks: &[~[~[u64]]],
board: u64,
mut i: int,
cur: List<u64>,
data: &mut Data)
-> bool
{
// Search for the lesser empty coordinate.
while board & (1 << i) != 0 && i < 50 {i += 1;}
// the board is full: a solution is found.
if i >= 50 {return handle_sol(&cur, data);}
// for every unused piece
for id in range(0, 10).filter(|id| board & (1 << (id + 50)) == 0) {
// for each mask that fits on the board
for &m in masks[id][i].iter().filter(|&m| board & *m == 0) {
// This check is too costy.
//if is_board_unfeasible(board | m, masks) {continue;}
if !search(masks, board | m, i + 1, Cons(m, &cur), data) {
return false;
}
}
}
return true;
}
fn main () {
let args = std::os::args();
let stop_after = if args.len() <= 1 {
2098
} else {
from_str(args[1]).unwrap()
};
let masks = make_masks();
let masks = filter_masks(masks);
let mut data = Data {stop_after: stop_after, nb: 0, min: ~"", max: ~""};
search(masks, 0, 0, Nil, &mut data);
println!("{} solutions found", data.nb);
print_sol(data.min);
print_sol(data.max);
println("");
}