Remove `ext::tt::transcribe::tt_next_token`.

This commit is contained in:
Jeffrey Seyfried 2017-01-27 13:21:20 +00:00
parent abdc68973e
commit 8c4960bfde
1 changed files with 124 additions and 149 deletions

View File

@ -7,7 +7,6 @@
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::LockstepIterSize::*;
use ast::Ident;
use errors::Handler;
@ -41,6 +40,13 @@ enum Frame {
},
}
impl Frame {
fn new(tts: Vec<TokenTree>) -> Frame {
let forest = Rc::new(tokenstream::Delimited { delim: token::NoDelim, tts: tts });
Frame::Delimited { forest: forest, idx: 0, span: DUMMY_SP }
}
}
impl Iterator for Frame {
type Item = TokenTree;
@ -75,17 +81,6 @@ impl Iterator for Frame {
}
}
struct TtReader<'a> {
sp_diag: &'a Handler,
/// the unzipped tree:
stack: SmallVector<Frame>,
/* for MBE-style macro transcription */
interpolations: HashMap<Ident, Rc<NamedMatch>>,
repeat_idx: Vec<usize>,
repeat_len: Vec<usize>,
}
/// This can do Macro-By-Example transcription. On the other hand, if
/// `src` contains no `TokenTree::Sequence`s, `MatchNt`s or `SubstNt`s, `interp` can
/// (and should) be None.
@ -93,125 +88,35 @@ pub fn transcribe(sp_diag: &Handler,
interp: Option<HashMap<Ident, Rc<NamedMatch>>>,
src: Vec<tokenstream::TokenTree>)
-> Vec<TokenTree> {
let mut r = TtReader {
sp_diag: sp_diag,
stack: SmallVector::one(Frame::Delimited {
forest: Rc::new(tokenstream::Delimited { delim: token::NoDelim, tts: src }),
idx: 0,
span: DUMMY_SP,
}),
interpolations: match interp { /* just a convenience */
None => HashMap::new(),
Some(x) => x,
},
repeat_idx: Vec::new(),
repeat_len: Vec::new(),
};
let mut stack = SmallVector::one(Frame::new(src));
let interpolations = interp.unwrap_or_else(HashMap::new); /* just a convenience */
let mut repeat_idx = Vec::new();
let mut repeat_len = Vec::new();
let mut result = Vec::new();
let mut tts = Vec::new();
let mut prev_span = DUMMY_SP;
while let Some(tt) = tt_next_token(&mut r, prev_span) {
prev_span = tt.span();
tts.push(tt);
}
tts
}
fn lookup_cur_matched_by_matched(r: &TtReader, start: Rc<NamedMatch>) -> Rc<NamedMatch> {
r.repeat_idx.iter().fold(start, |ad, idx| {
match *ad {
MatchedNonterminal(_) => {
// end of the line; duplicate henceforth
ad.clone()
}
MatchedSeq(ref ads, _) => ads[*idx].clone()
}
})
}
fn lookup_cur_matched(r: &TtReader, name: Ident) -> Option<Rc<NamedMatch>> {
let matched_opt = r.interpolations.get(&name).cloned();
matched_opt.map(|s| lookup_cur_matched_by_matched(r, s))
}
#[derive(Clone)]
enum LockstepIterSize {
LisUnconstrained,
LisConstraint(usize, Ident),
LisContradiction(String),
}
impl Add for LockstepIterSize {
type Output = LockstepIterSize;
fn add(self, other: LockstepIterSize) -> LockstepIterSize {
match self {
LisUnconstrained => other,
LisContradiction(_) => self,
LisConstraint(l_len, ref l_id) => match other {
LisUnconstrained => self.clone(),
LisContradiction(_) => other,
LisConstraint(r_len, _) if l_len == r_len => self.clone(),
LisConstraint(r_len, r_id) => {
LisContradiction(format!("inconsistent lockstep iteration: \
'{}' has {} items, but '{}' has {}",
l_id, l_len, r_id, r_len))
}
},
}
}
}
fn lockstep_iter_size(t: &TokenTree, r: &TtReader) -> LockstepIterSize {
match *t {
TokenTree::Delimited(_, ref delimed) => {
delimed.tts.iter().fold(LisUnconstrained, |size, tt| {
size + lockstep_iter_size(tt, r)
})
},
TokenTree::Sequence(_, ref seq) => {
seq.tts.iter().fold(LisUnconstrained, |size, tt| {
size + lockstep_iter_size(tt, r)
})
},
TokenTree::Token(_, SubstNt(name)) | TokenTree::Token(_, MatchNt(name, _)) =>
match lookup_cur_matched(r, name) {
Some(matched) => match *matched {
MatchedNonterminal(_) => LisUnconstrained,
MatchedSeq(ref ads, _) => LisConstraint(ads.len(), name),
},
_ => LisUnconstrained
},
TokenTree::Token(..) => LisUnconstrained,
}
}
/// Return the next token from the TtReader.
/// EFFECT: advances the reader's token field
fn tt_next_token(r: &mut TtReader, prev_span: Span) -> Option<TokenTree> {
loop {
let tree = match r.stack.last_mut() {
Some(frame) => frame.next(),
None => return None,
};
let tree = if let Some(tree) = tree {
let tree = if let Some(tree) = stack.last_mut().unwrap().next() {
tree
} else {
if let Frame::Sequence { ref mut idx, ref sep, .. } = *r.stack.last_mut().unwrap() {
if *r.repeat_idx.last().unwrap() < *r.repeat_len.last().unwrap() - 1 {
*r.repeat_idx.last_mut().unwrap() += 1;
if let Frame::Sequence { ref mut idx, ref sep, .. } = *stack.last_mut().unwrap() {
if *repeat_idx.last().unwrap() < *repeat_len.last().unwrap() - 1 {
*repeat_idx.last_mut().unwrap() += 1;
*idx = 0;
if let Some(sep) = sep.clone() {
return Some(TokenTree::Token(prev_span, sep)); // repeat same span, I guess
// repeat same span, I guess
let prev_span = result.last().map(TokenTree::span).unwrap_or(DUMMY_SP);
result.push(TokenTree::Token(prev_span, sep));
}
continue
}
}
if let Frame::Sequence { .. } = r.stack.pop().unwrap() {
r.repeat_idx.pop();
r.repeat_len.pop();
if let Frame::Sequence { .. } = stack.pop().unwrap() {
repeat_idx.pop();
repeat_len.pop();
}
if stack.is_empty() {
return result;
}
continue
};
@ -220,73 +125,143 @@ fn tt_next_token(r: &mut TtReader, prev_span: Span) -> Option<TokenTree> {
TokenTree::Sequence(sp, seq) => {
// FIXME(pcwalton): Bad copy.
match lockstep_iter_size(&TokenTree::Sequence(sp, seq.clone()),
r) {
LisUnconstrained => {
panic!(r.sp_diag.span_fatal(
&interpolations,
&repeat_idx) {
LockstepIterSize::Unconstrained => {
panic!(sp_diag.span_fatal(
sp.clone(), /* blame macro writer */
"attempted to repeat an expression \
containing no syntax \
variables matched as repeating at this depth"));
}
LisContradiction(ref msg) => {
LockstepIterSize::Contradiction(ref msg) => {
// FIXME #2887 blame macro invoker instead
panic!(r.sp_diag.span_fatal(sp.clone(), &msg[..]));
panic!(sp_diag.span_fatal(sp.clone(), &msg[..]));
}
LisConstraint(len, _) => {
LockstepIterSize::Constraint(len, _) => {
if len == 0 {
if seq.op == tokenstream::KleeneOp::OneOrMore {
// FIXME #2887 blame invoker
panic!(r.sp_diag.span_fatal(sp.clone(),
"this must repeat at least once"));
panic!(sp_diag.span_fatal(sp.clone(),
"this must repeat at least once"));
}
return tt_next_token(r, prev_span);
} else {
repeat_len.push(len);
repeat_idx.push(0);
stack.push(Frame::Sequence {
idx: 0,
sep: seq.separator.clone(),
forest: seq,
});
}
r.repeat_len.push(len);
r.repeat_idx.push(0);
r.stack.push(Frame::Sequence {
idx: 0,
sep: seq.separator.clone(),
forest: seq,
});
}
}
}
// FIXME #2887: think about span stuff here
TokenTree::Token(sp, SubstNt(ident)) => {
match lookup_cur_matched(r, ident) {
None => {
return Some(TokenTree::Token(sp, SubstNt(ident)));
// this can't be 0 length, just like TokenTree::Delimited
}
match lookup_cur_matched(ident, &interpolations, &repeat_idx) {
None => result.push(TokenTree::Token(sp, SubstNt(ident))),
Some(cur_matched) => if let MatchedNonterminal(ref nt) = *cur_matched {
match **nt {
// sidestep the interpolation tricks for ident because
// (a) idents can be in lots of places, so it'd be a pain
// (b) we actually can, since it's a token.
NtIdent(ref sn) => {
return Some(TokenTree::Token(sn.span, token::Ident(sn.node)));
result.push(TokenTree::Token(sn.span, token::Ident(sn.node)));
}
NtTT(ref tt) => return Some(tt.clone()),
NtTT(ref tt) => result.push(tt.clone()),
_ => {
// FIXME(pcwalton): Bad copy
return Some(TokenTree::Token(sp, token::Interpolated(nt.clone())));
result.push(TokenTree::Token(sp, token::Interpolated(nt.clone())));
}
}
} else {
panic!(r.sp_diag.span_fatal(
panic!(sp_diag.span_fatal(
sp, /* blame the macro writer */
&format!("variable '{}' is still repeating at this depth", ident)));
}
}
}
TokenTree::Delimited(span, delimited) => {
r.stack.push(Frame::Delimited { forest: delimited, idx: 0, span: span });
stack.push(Frame::Delimited { forest: delimited, idx: 0, span: span });
}
TokenTree::Token(span, MatchNt(name, kind)) => {
r.stack.push(Frame::MatchNt { name: name, kind: kind, idx: 0, span: span });
stack.push(Frame::MatchNt { name: name, kind: kind, idx: 0, span: span });
}
tt @ TokenTree::Token(..) => return Some(tt),
tt @ TokenTree::Token(..) => result.push(tt),
}
}
}
fn lookup_cur_matched(ident: Ident,
interpolations: &HashMap<Ident, Rc<NamedMatch>>,
repeat_idx: &[usize])
-> Option<Rc<NamedMatch>> {
interpolations.get(&ident).map(|matched| {
repeat_idx.iter().fold(matched.clone(), |ad, idx| {
match *ad {
MatchedNonterminal(_) => {
// end of the line; duplicate henceforth
ad.clone()
}
MatchedSeq(ref ads, _) => ads[*idx].clone()
}
})
})
}
#[derive(Clone)]
enum LockstepIterSize {
Unconstrained,
Constraint(usize, Ident),
Contradiction(String),
}
impl Add for LockstepIterSize {
type Output = LockstepIterSize;
fn add(self, other: LockstepIterSize) -> LockstepIterSize {
match self {
LockstepIterSize::Unconstrained => other,
LockstepIterSize::Contradiction(_) => self,
LockstepIterSize::Constraint(l_len, ref l_id) => match other {
LockstepIterSize::Unconstrained => self.clone(),
LockstepIterSize::Contradiction(_) => other,
LockstepIterSize::Constraint(r_len, _) if l_len == r_len => self.clone(),
LockstepIterSize::Constraint(r_len, r_id) => {
let msg = format!("inconsistent lockstep iteration: \
'{}' has {} items, but '{}' has {}",
l_id, l_len, r_id, r_len);
LockstepIterSize::Contradiction(msg)
}
},
}
}
}
fn lockstep_iter_size(tree: &TokenTree,
interpolations: &HashMap<Ident, Rc<NamedMatch>>,
repeat_idx: &[usize])
-> LockstepIterSize {
match *tree {
TokenTree::Delimited(_, ref delimed) => {
delimed.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size + lockstep_iter_size(tt, interpolations, repeat_idx)
})
},
TokenTree::Sequence(_, ref seq) => {
seq.tts.iter().fold(LockstepIterSize::Unconstrained, |size, tt| {
size + lockstep_iter_size(tt, interpolations, repeat_idx)
})
},
TokenTree::Token(_, SubstNt(name)) | TokenTree::Token(_, MatchNt(name, _)) =>
match lookup_cur_matched(name, interpolations, repeat_idx) {
Some(matched) => match *matched {
MatchedNonterminal(_) => LockstepIterSize::Unconstrained,
MatchedSeq(ref ads, _) => LockstepIterSize::Constraint(ads.len(), name),
},
_ => LockstepIterSize::Unconstrained
},
TokenTree::Token(..) => LockstepIterSize::Unconstrained,
}
}