num: rm wrapping of `Float` methods as functions

The `Float` trait methods will be usable as functions via UFCS, and
we came to a consensus to remove duplicate functions like this a long
time ago.

It does still make sense to keep the duplicate functions when the trait
methods are static, unless the decision to leave out the in-scope trait
name resolution for static methods changes.
This commit is contained in:
Daniel Micay 2014-03-31 07:00:26 -04:00
parent e63b2d3077
commit 8ca5caf4d9
5 changed files with 10 additions and 88 deletions

View File

@ -332,8 +332,6 @@ sense, they're simple: just keep whatever ownership the data already has. For
example:
~~~rust
use std::num::sqrt;
struct Point {
x: f32,
y: f32,
@ -343,7 +341,7 @@ fn compute_distance(p1: &Point, p2: &Point) -> f32 {
let x_d = p1.x - p2.x;
let y_d = p1.y - p2.y;
sqrt(x_d * x_d + y_d * y_d)
(x_d * x_d + y_d * y_d).sqrt()
}
fn main() {

View File

@ -826,14 +826,14 @@ Use declarations support a number of convenient shortcuts:
An example of `use` declarations:
~~~~
use std::num::sin;
use std::iter::range_step;
use std::option::{Some, None};
# fn foo<T>(_: T){}
fn main() {
// Equivalent to 'std::num::sin(1.0);'
sin(1.0);
// Equivalent to 'std::iter::range_step(0, 10, 2);'
range_step(0, 10, 2);
// Equivalent to 'foo(~[std::option::Some(1.0), std::option::None]);'
foo(~[Some(1.0), None]);

View File

@ -504,13 +504,12 @@ matching in order to bind names to the contents of data types.
~~~~
use std::f64;
use std::num::atan;
fn angle(vector: (f64, f64)) -> f64 {
let pi = f64::consts::PI;
match vector {
(0.0, y) if y < 0.0 => 1.5 * pi,
(0.0, _) => 0.5 * pi,
(x, y) => atan(y / x)
(x, y) => (y / x).atan()
}
}
~~~~
@ -1430,12 +1429,11 @@ bad, but often copies are expensive. So wed like to define a function
that takes the points by pointer. We can use references to do this:
~~~
use std::num::sqrt;
# struct Point { x: f64, y: f64 }
fn compute_distance(p1: &Point, p2: &Point) -> f64 {
let x_d = p1.x - p2.x;
let y_d = p1.y - p2.y;
sqrt(x_d * x_d + y_d * y_d)
(x_d * x_d + y_d * y_d).sqrt()
}
~~~
@ -2303,7 +2301,7 @@ impl Shape for Circle {
fn new(area: f64) -> Circle { Circle { radius: (area / PI).sqrt() } }
}
impl Shape for Square {
fn new(area: f64) -> Square { Square { length: (area).sqrt() } }
fn new(area: f64) -> Square { Square { length: area.sqrt() } }
}
let area = 42.5;

View File

@ -11,7 +11,6 @@
//! The Gamma and derived distributions.
use std::num::Float;
use std::num;
use {Rng, Open01};
use super::normal::StandardNormal;
use super::{IndependentSample, Sample, Exp};
@ -114,7 +113,7 @@ impl GammaLargeShape {
GammaLargeShape {
shape: shape,
scale: scale,
c: 1. / num::sqrt(9. * d),
c: 1. / (9. * d).sqrt(),
d: d
}
}
@ -143,7 +142,7 @@ impl IndependentSample<f64> for GammaSmallShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Open01(u) = rng.gen::<Open01<f64>>();
self.large_shape.ind_sample(rng) * num::powf(u, self.inv_shape)
self.large_shape.ind_sample(rng) * u.powf(&self.inv_shape)
}
}
impl IndependentSample<f64> for GammaLargeShape {
@ -160,7 +159,7 @@ impl IndependentSample<f64> for GammaLargeShape {
let x_sqr = x * x;
if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
num::ln(u) < 0.5 * x_sqr + self.d * (1.0 - v + num::ln(v)) {
u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
return self.d * v * self.scale
}
}

View File

@ -553,79 +553,6 @@ pub trait Float: Signed + Round + Primitive {
fn to_radians(&self) -> Self;
}
/// Returns the exponential of the number, minus `1`, `exp(n) - 1`, in a way
/// that is accurate even if the number is close to zero.
#[inline(always)] pub fn exp_m1<T: Float>(value: T) -> T { value.exp_m1() }
/// Returns the natural logarithm of the number plus `1`, `ln(n + 1)`, more
/// accurately than if the operations were performed separately.
#[inline(always)] pub fn ln_1p<T: Float>(value: T) -> T { value.ln_1p() }
/// Fused multiply-add. Computes `(a * b) + c` with only one rounding error.
///
/// This produces a more accurate result with better performance (on some
/// architectures) than a separate multiplication operation followed by an add.
#[inline(always)] pub fn mul_add<T: Float>(a: T, b: T, c: T) -> T { a.mul_add(b, c) }
/// Raise a number to a power.
///
/// # Example
///
/// ```rust
/// use std::num;
///
/// let sixteen: f64 = num::powf(2.0, 4.0);
/// assert_eq!(sixteen, 16.0);
/// ```
#[inline(always)] pub fn powf<T: Float>(value: T, n: T) -> T { value.powf(&n) }
/// Take the square root of a number.
#[inline(always)] pub fn sqrt<T: Float>(value: T) -> T { value.sqrt() }
/// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`.
#[inline(always)] pub fn rsqrt<T: Float>(value: T) -> T { value.rsqrt() }
/// Take the cubic root of a number.
#[inline(always)] pub fn cbrt<T: Float>(value: T) -> T { value.cbrt() }
/// Calculate the length of the hypotenuse of a right-angle triangle given legs
/// of length `x` and `y`.
#[inline(always)] pub fn hypot<T: Float>(x: T, y: T) -> T { x.hypot(&y) }
/// Sine function.
#[inline(always)] pub fn sin<T: Float>(value: T) -> T { value.sin() }
/// Cosine function.
#[inline(always)] pub fn cos<T: Float>(value: T) -> T { value.cos() }
/// Tangent function.
#[inline(always)] pub fn tan<T: Float>(value: T) -> T { value.tan() }
/// Compute the arcsine of the number.
#[inline(always)] pub fn asin<T: Float>(value: T) -> T { value.asin() }
/// Compute the arccosine of the number.
#[inline(always)] pub fn acos<T: Float>(value: T) -> T { value.acos() }
/// Compute the arctangent of the number.
#[inline(always)] pub fn atan<T: Float>(value: T) -> T { value.atan() }
/// Compute the arctangent with 2 arguments.
#[inline(always)] pub fn atan2<T: Float>(x: T, y: T) -> T { x.atan2(&y) }
/// Simultaneously computes the sine and cosine of the number.
#[inline(always)] pub fn sin_cos<T: Float>(value: T) -> (T, T) { value.sin_cos() }
/// Returns `e^(value)`, (the exponential function).
#[inline(always)] pub fn exp<T: Float>(value: T) -> T { value.exp() }
/// Returns 2 raised to the power of the number, `2^(value)`.
#[inline(always)] pub fn exp2<T: Float>(value: T) -> T { value.exp2() }
/// Returns the natural logarithm of the number.
#[inline(always)] pub fn ln<T: Float>(value: T) -> T { value.ln() }
/// Returns the logarithm of the number with respect to an arbitrary base.
#[inline(always)] pub fn log<T: Float>(value: T, base: T) -> T { value.log(&base) }
/// Returns the base 2 logarithm of the number.
#[inline(always)] pub fn log2<T: Float>(value: T) -> T { value.log2() }
/// Returns the base 10 logarithm of the number.
#[inline(always)] pub fn log10<T: Float>(value: T) -> T { value.log10() }
/// Hyperbolic sine function.
#[inline(always)] pub fn sinh<T: Float>(value: T) -> T { value.sinh() }
/// Hyperbolic cosine function.
#[inline(always)] pub fn cosh<T: Float>(value: T) -> T { value.cosh() }
/// Hyperbolic tangent function.
#[inline(always)] pub fn tanh<T: Float>(value: T) -> T { value.tanh() }
/// Inverse hyperbolic sine function.
#[inline(always)] pub fn asinh<T: Float>(value: T) -> T { value.asinh() }
/// Inverse hyperbolic cosine function.
#[inline(always)] pub fn acosh<T: Float>(value: T) -> T { value.acosh() }
/// Inverse hyperbolic tangent function.
#[inline(always)] pub fn atanh<T: Float>(value: T) -> T { value.atanh() }
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `int`.