auto merge of #10478 : TeXitoi/rust/shootout-meteor, r=brson
This implementation of the meteor contest implements: - insertion check with bit trick; - pregenetation of every feasible placement of the pieces on the board; - filtering of placement that implies unfeasible board - central symetry breaking related to #2776
This commit is contained in:
commit
90754ae9c9
281
src/test/bench/shootout-meteor.rs
Normal file
281
src/test/bench/shootout-meteor.rs
Normal file
@ -0,0 +1,281 @@
|
||||
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
//
|
||||
// Utilities.
|
||||
//
|
||||
|
||||
// returns an infinite iterator of repeated applications of f to x,
|
||||
// i.e. [x, f(x), f(f(x)), ...], as haskell iterate function.
|
||||
fn iterate<'a, T>(x: T, f: &'a fn(&T) -> T) -> Iterate<'a, T> {
|
||||
Iterate {f: f, next: x}
|
||||
}
|
||||
struct Iterate<'self, T> {
|
||||
priv f: &'self fn(&T) -> T,
|
||||
priv next: T
|
||||
}
|
||||
impl<'self, T> Iterator<T> for Iterate<'self, T> {
|
||||
fn next(&mut self) -> Option<T> {
|
||||
let mut res = (self.f)(&self.next);
|
||||
std::util::swap(&mut res, &mut self.next);
|
||||
Some(res)
|
||||
}
|
||||
}
|
||||
|
||||
// a linked list using borrowed next.
|
||||
enum List<'self, T> {
|
||||
Nil,
|
||||
Cons(T, &'self List<'self, T>)
|
||||
}
|
||||
struct ListIterator<'self, T> {
|
||||
priv cur: &'self List<'self, T>
|
||||
}
|
||||
impl<'self, T> List<'self, T> {
|
||||
fn iter(&'self self) -> ListIterator<'self, T> {
|
||||
ListIterator{cur: self}
|
||||
}
|
||||
}
|
||||
impl<'self, T> Iterator<&'self T> for ListIterator<'self, T> {
|
||||
fn next(&mut self) -> Option<&'self T> {
|
||||
match *self.cur {
|
||||
Nil => None,
|
||||
Cons(ref elt, next) => {
|
||||
self.cur = next;
|
||||
Some(elt)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// preprocess
|
||||
//
|
||||
|
||||
// Takes a pieces p on the form [(y1, x1), (y2, x2), ...] and returns
|
||||
// every possible transformations (the 6 rotations with their
|
||||
// corresponding mirrored piece), with, as minimum coordinates, (0,
|
||||
// 0). If all is false, only generate half of the possibilities (used
|
||||
// to break the symetry of the board).
|
||||
fn transform(piece: ~[(int, int)], all: bool) -> ~[~[(int, int)]] {
|
||||
let mut res =
|
||||
// rotations
|
||||
iterate(piece, |rot| rot.iter().map(|&(y, x)| (x + y, -y)).collect())
|
||||
.take(if all {6} else {3})
|
||||
// mirror
|
||||
.flat_map(|cur_piece| {
|
||||
iterate(cur_piece, |mir| mir.iter().map(|&(y, x)| (x, y)).collect())
|
||||
.take(2)
|
||||
}).to_owned_vec();
|
||||
|
||||
// translating to (0, 0) as minimum coordinates.
|
||||
for cur_piece in res.mut_iter() {
|
||||
let (dy, dx) = *cur_piece.iter().min_by(|e| *e).unwrap();
|
||||
for &(ref mut y, ref mut x) in cur_piece.mut_iter() {
|
||||
*y -= dy; *x -= dx;
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
// A mask is a piece somewere on the board. It is represented as a
|
||||
// u64: for i in the first 50 bits, m[i] = 1 if the cell at (i/5, i%5)
|
||||
// is occuped. m[50 + id] = 1 if the identifier of the piece is id.
|
||||
|
||||
// Takes a piece with minimum coordinate (0, 0) (as generated by
|
||||
// transform). Returns the corresponding mask if p translated by (dy,
|
||||
// dx) is on the board.
|
||||
fn mask(dy: int, dx: int, id: uint, p: &[(int, int)]) -> Option<u64> {
|
||||
let mut m = 1 << (50 + id);
|
||||
for &(y, x) in p.iter() {
|
||||
let x = x + dx + (y + (dy % 2)) / 2;
|
||||
if x < 0 || x > 4 {return None;}
|
||||
let y = y + dy;
|
||||
if y < 0 || y > 9 {return None;}
|
||||
m |= 1 << (y * 5 + x);
|
||||
}
|
||||
Some(m)
|
||||
}
|
||||
|
||||
// Makes every possible masks. masks[id][i] correspond to every
|
||||
// possible masks for piece with identifier id with minimum coordinate
|
||||
// (i/5, i%5).
|
||||
fn make_masks() -> ~[~[~[u64]]] {
|
||||
let pieces = ~[
|
||||
~[(0,0),(0,1),(0,2),(0,3),(1,3)],
|
||||
~[(0,0),(0,2),(0,3),(1,0),(1,1)],
|
||||
~[(0,0),(0,1),(0,2),(1,2),(2,1)],
|
||||
~[(0,0),(0,1),(0,2),(1,1),(2,1)],
|
||||
~[(0,0),(0,2),(1,0),(1,1),(2,1)],
|
||||
~[(0,0),(0,1),(0,2),(1,1),(1,2)],
|
||||
~[(0,0),(0,1),(1,1),(1,2),(2,1)],
|
||||
~[(0,0),(0,1),(0,2),(1,0),(1,2)],
|
||||
~[(0,0),(0,1),(0,2),(1,2),(1,3)],
|
||||
~[(0,0),(0,1),(0,2),(0,3),(1,2)]];
|
||||
let mut res = ~[];
|
||||
for (id, p) in pieces.move_iter().enumerate() {
|
||||
// To break the central symetry of the problem, every
|
||||
// transformation must be taken except for one piece (piece 3
|
||||
// here).
|
||||
let trans = transform(p, id != 3);
|
||||
let mut cur_piece = ~[];
|
||||
for dy in range(0, 10) {
|
||||
for dx in range(0, 5) {
|
||||
let masks =
|
||||
trans.iter()
|
||||
.filter_map(|t| mask(dy, dx, id, *t))
|
||||
.collect();
|
||||
cur_piece.push(masks);
|
||||
}
|
||||
}
|
||||
res.push(cur_piece);
|
||||
}
|
||||
res
|
||||
}
|
||||
|
||||
// Check if all coordinates can be covered by an unused piece and that
|
||||
// all unused piece can be placed on the board.
|
||||
fn is_board_unfeasible(board: u64, masks: &[~[~[u64]]]) -> bool {
|
||||
let mut coverable = board;
|
||||
for i in range(0, 50).filter(|&i| board & 1 << i == 0) {
|
||||
for (cur_id, pos_masks) in masks.iter().enumerate() {
|
||||
if board & 1 << (50 + cur_id) != 0 {continue;}
|
||||
for &cur_m in pos_masks[i].iter() {
|
||||
if cur_m & board == 0 {coverable |= cur_m;}
|
||||
}
|
||||
}
|
||||
if coverable & (1 << i) == 0 {return true;}
|
||||
}
|
||||
// check if every coordinates can be covered and every piece can
|
||||
// be used.
|
||||
coverable != (1 << 60) - 1
|
||||
}
|
||||
|
||||
// Filter the masks that we can prove to result to unfeasible board.
|
||||
fn filter_masks(masks: &[~[~[u64]]]) -> ~[~[~[u64]]] {
|
||||
masks.iter().map(
|
||||
|p| p.iter().map(
|
||||
|p| p.iter()
|
||||
.map(|&m| m)
|
||||
.filter(|&m| !is_board_unfeasible(m, masks))
|
||||
.collect())
|
||||
.collect())
|
||||
.collect()
|
||||
}
|
||||
|
||||
// Gets the identifier of a mask.
|
||||
fn get_id(m: u64) -> u8 {
|
||||
for id in range(0, 10) {
|
||||
if m & (1 << (id + 50)) != 0 {return id as u8;}
|
||||
}
|
||||
fail!("{:016x} does not have a valid identifier", m);
|
||||
}
|
||||
|
||||
// Converts a list of mask to a ~str.
|
||||
fn to_utf8(raw_sol: &List<u64>) -> ~str {
|
||||
let mut sol: ~[u8] = std::vec::from_elem(50, '.' as u8);
|
||||
for &m in raw_sol.iter() {
|
||||
let id = get_id(m);
|
||||
for i in range(0, 50) {
|
||||
if m & 1 << i != 0 {sol[i] = '0' as u8 + id;}
|
||||
}
|
||||
}
|
||||
std::str::from_utf8_owned(sol)
|
||||
}
|
||||
|
||||
// Prints a solution in ~str form.
|
||||
fn print_sol(sol: &str) {
|
||||
for (i, c) in sol.iter().enumerate() {
|
||||
if (i) % 5 == 0 {println("");}
|
||||
if (i + 5) % 10 == 0 {print(" ");}
|
||||
print!("{} ", c);
|
||||
}
|
||||
println("");
|
||||
}
|
||||
|
||||
// The data managed during the search
|
||||
struct Data {
|
||||
// If more than stop_after is found, stop the search.
|
||||
stop_after: int,
|
||||
// Number of solution found.
|
||||
nb: int,
|
||||
// Lexicographically minimal solution found.
|
||||
min: ~str,
|
||||
// Lexicographically maximal solution found.
|
||||
max: ~str
|
||||
}
|
||||
|
||||
// Records a new found solution. Returns false if the search must be
|
||||
// stopped.
|
||||
fn handle_sol(raw_sol: &List<u64>, data: &mut Data) -> bool {
|
||||
// because we break the symetry, 2 solutions correspond to a call
|
||||
// to this method: the normal solution, and the same solution in
|
||||
// reverse order, i.e. the board rotated by half a turn.
|
||||
data.nb += 2;
|
||||
let sol1 = to_utf8(raw_sol);
|
||||
let sol2: ~str = sol1.iter().invert().collect();
|
||||
|
||||
if data.nb == 2 {
|
||||
data.min = sol1.clone();
|
||||
data.max = sol1.clone();
|
||||
}
|
||||
|
||||
if sol1 < data.min {data.min = sol1.clone();}
|
||||
if sol2 < data.min {data.min = sol2.clone();}
|
||||
if sol1 > data.max {data.max = sol1;}
|
||||
if sol2 > data.max {data.max = sol2;}
|
||||
data.nb < data.stop_after
|
||||
}
|
||||
|
||||
// Search for every solutions. Returns false if the search was
|
||||
// stopped before the end.
|
||||
fn search(
|
||||
masks: &[~[~[u64]]],
|
||||
board: u64,
|
||||
mut i: int,
|
||||
cur: List<u64>,
|
||||
data: &mut Data)
|
||||
-> bool
|
||||
{
|
||||
// Search for the lesser empty coordinate.
|
||||
while board & (1 << i) != 0 && i < 50 {i += 1;}
|
||||
// the board is full: a solution is found.
|
||||
if i >= 50 {return handle_sol(&cur, data);}
|
||||
|
||||
// for every unused piece
|
||||
for id in range(0, 10).filter(|id| board & (1 << (id + 50)) == 0) {
|
||||
// for each mask that fits on the board
|
||||
for &m in masks[id][i].iter().filter(|&m| board & *m == 0) {
|
||||
// This check is too costy.
|
||||
//if is_board_unfeasible(board | m, masks) {continue;}
|
||||
if !search(masks, board | m, i + 1, Cons(m, &cur), data) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
fn main () {
|
||||
let args = std::os::args();
|
||||
let stop_after = if args.len() <= 1 {
|
||||
2098
|
||||
} else {
|
||||
from_str(args[1]).unwrap()
|
||||
};
|
||||
let masks = make_masks();
|
||||
let masks = filter_masks(masks);
|
||||
let mut data = Data {stop_after: stop_after, nb: 0, min: ~"", max: ~""};
|
||||
search(masks, 0, 0, Nil, &mut data);
|
||||
println!("{} solutions found", data.nb);
|
||||
print_sol(data.min);
|
||||
print_sol(data.max);
|
||||
println("");
|
||||
}
|
Loading…
Reference in New Issue
Block a user