auto merge of #14590 : pcwalton/rust/overloaded-call, r=nick29581

gate.

This is part of unboxed closures.

r? @nick29581
This commit is contained in:
bors 2014-06-09 17:37:08 -07:00
commit 907d961876
12 changed files with 701 additions and 234 deletions

View File

@ -726,6 +726,27 @@ pub trait DerefMut<Result>: Deref<Result> {
fn deref_mut<'a>(&'a mut self) -> &'a mut Result;
}
/// A version of the call operator that takes an immutable receiver.
#[lang="fn"]
pub trait Fn<Args,Result> {
/// This is called when the call operator is used.
fn call(&self, args: Args) -> Result;
}
/// A version of the call operator that takes a mutable receiver.
#[lang="fn_mut"]
pub trait FnMut<Args,Result> {
/// This is called when the call operator is used.
fn call_mut(&mut self, args: Args) -> Result;
}
/// A version of the call operator that takes a by-value receiver.
#[lang="fn_once"]
pub trait FnOnce<Args,Result> {
/// This is called when the call operator is used.
fn call_once(self, args: Args) -> Result;
}
#[cfg(test)]
mod bench {
extern crate test;

View File

@ -56,6 +56,7 @@ static KNOWN_FEATURES: &'static [(&'static str, Status)] = &[
("quote", Active),
("linkage", Active),
("struct_inherit", Active),
("overloaded_calls", Active),
("quad_precision_float", Active),
@ -86,6 +87,7 @@ pub struct Features {
pub default_type_params: Cell<bool>,
pub quad_precision_float: Cell<bool>,
pub issue_5723_bootstrap: Cell<bool>,
pub overloaded_calls: Cell<bool>,
}
impl Features {
@ -94,6 +96,7 @@ impl Features {
default_type_params: Cell::new(false),
quad_precision_float: Cell::new(false),
issue_5723_bootstrap: Cell::new(false),
overloaded_calls: Cell::new(false),
}
}
}
@ -375,4 +378,5 @@ pub fn check_crate(sess: &Session, krate: &ast::Crate) {
sess.features.default_type_params.set(cx.has_feature("default_type_params"));
sess.features.quad_precision_float.set(cx.has_feature("quad_precision_float"));
sess.features.issue_5723_bootstrap.set(cx.has_feature("issue_5723_bootstrap"));
sess.features.overloaded_calls.set(cx.has_feature("overloaded_calls"));
}

View File

@ -19,6 +19,7 @@ use middle::def;
use middle::freevars;
use middle::pat_util;
use middle::ty;
use middle::typeck::MethodCall;
use middle::typeck;
use syntax::ast;
use syntax::codemap::{Span};
@ -427,10 +428,20 @@ impl<'d,'t,TYPER:mc::Typer> ExprUseVisitor<'d,'t,TYPER> {
}
}
_ => {
self.tcx().sess.span_bug(
callee.span,
format!("unxpected callee type {}",
callee_ty.repr(self.tcx())).as_slice());
match self.tcx()
.method_map
.borrow()
.find(&MethodCall::expr(call.id)) {
Some(_) => {
// FIXME(#14774, pcwalton): Implement this.
}
None => {
self.tcx().sess.span_bug(
callee.span,
format!("unxpected callee type {}",
callee_ty.repr(self.tcx())).as_slice());
}
}
}
}
}

View File

@ -240,6 +240,10 @@ lets_do_this! {
DerefTraitLangItem, "deref", deref_trait;
DerefMutTraitLangItem, "deref_mut", deref_mut_trait;
FnTraitLangItem, "fn", fn_trait;
FnMutTraitLangItem, "fn_mut", fn_mut_trait;
FnOnceTraitLangItem, "fn_once", fn_once_trait;
EqTraitLangItem, "eq", eq_trait;
OrdTraitLangItem, "ord", ord_trait;

View File

@ -105,6 +105,7 @@
use middle::def::*;
use middle::freevars;
use middle::lint::{UnusedVariable, DeadAssignment};
use middle::mem_categorization::Typer;
use middle::pat_util;
use middle::ty;
use util::nodemap::NodeMap;
@ -1146,9 +1147,15 @@ impl<'a> Liveness<'a> {
ExprCall(f, ref args) => {
// calling a fn with bot return type means that the fn
// will fail, and hence the successors can be ignored
let t_ret = ty::ty_fn_ret(ty::expr_ty(self.ir.tcx, f));
let succ = if ty::type_is_bot(t_ret) {self.s.exit_ln}
else {succ};
let is_bot = !self.ir.tcx.is_method_call(expr.id) && {
let t_ret = ty::ty_fn_ret(ty::expr_ty(self.ir.tcx, f));
ty::type_is_bot(t_ret)
};
let succ = if is_bot {
self.s.exit_ln
} else {
succ
};
let succ = self.propagate_through_exprs(args.as_slice(), succ);
self.propagate_through_expr(f, succ)
}

View File

@ -39,6 +39,7 @@ use lib;
use metadata::csearch;
use middle::def;
use middle::lang_items::MallocFnLangItem;
use middle::mem_categorization::Typer;
use middle::trans::_match;
use middle::trans::adt;
use middle::trans::asm;
@ -65,6 +66,7 @@ use middle::ty::{AutoBorrowObj, AutoDerefRef, AutoAddEnv, AutoObject, AutoUnsafe
use middle::ty::{AutoPtr, AutoBorrowVec, AutoBorrowVecRef};
use middle::ty;
use middle::typeck::MethodCall;
use middle::typeck;
use util::common::indenter;
use util::ppaux::Repr;
use util::nodemap::NodeMap;
@ -713,7 +715,20 @@ fn trans_rvalue_dps_unadjusted<'a>(bcx: &'a Block<'a>,
closure::trans_expr_fn(bcx, store, decl, body, expr.id, dest)
}
ast::ExprCall(f, ref args) => {
callee::trans_call(bcx, expr, f, callee::ArgExprs(args.as_slice()), dest)
if bcx.tcx().is_method_call(expr.id) {
let callee_datum = unpack_datum!(bcx, trans(bcx, f));
trans_overloaded_call(bcx,
expr,
callee_datum,
args.as_slice(),
Some(dest))
} else {
callee::trans_call(bcx,
expr,
f,
callee::ArgExprs(args.as_slice()),
dest)
}
}
ast::ExprMethodCall(_, _, ref args) => {
callee::trans_method_call(bcx,
@ -1461,6 +1476,76 @@ fn trans_overloaded_op<'a, 'b>(
dest)
}
fn trans_overloaded_call<'a>(
mut bcx: &'a Block<'a>,
expr: &ast::Expr,
callee: Datum<Expr>,
args: &[@ast::Expr],
dest: Option<Dest>)
-> &'a Block<'a> {
// Evaluate and tuple the arguments.
let tuple_type = ty::mk_tup(bcx.tcx(),
args.iter()
.map(|e| expr_ty(bcx, *e))
.collect());
let repr = adt::represent_type(bcx.ccx(), tuple_type);
let numbered_fields: Vec<(uint, @ast::Expr)> =
args.iter().enumerate().map(|(i, arg)| (i, *arg)).collect();
let argument_scope = bcx.fcx.push_custom_cleanup_scope();
let tuple_datum =
unpack_datum!(bcx,
lvalue_scratch_datum(bcx,
tuple_type,
"tupled_arguments",
false,
cleanup::CustomScope(
argument_scope),
(),
|(), bcx, addr| {
trans_adt(bcx,
&*repr,
0,
numbered_fields.as_slice(),
None,
SaveIn(addr))
}));
let method_call = typeck::MethodCall::expr(expr.id);
let method_type = bcx.tcx()
.method_map
.borrow()
.get(&method_call)
.ty;
let callee_rvalue = unpack_datum!(bcx,
callee.to_rvalue_datum(bcx, "callee"));
let tuple_datum = tuple_datum.to_expr_datum();
let tuple_rvalue = unpack_datum!(bcx,
tuple_datum.to_rvalue_datum(bcx,
"tuple"));
let argument_values = [
callee_rvalue.add_clean(bcx.fcx,
cleanup::CustomScope(argument_scope)),
tuple_rvalue.add_clean(bcx.fcx, cleanup::CustomScope(argument_scope))
];
unpack_result!(bcx,
callee::trans_call_inner(bcx,
Some(expr_info(expr)),
monomorphize_type(bcx,
method_type),
|bcx, arg_cleanup_scope| {
meth::trans_method_callee(
bcx,
method_call,
None,
arg_cleanup_scope)
},
callee::ArgVals(argument_values),
dest));
bcx.fcx.pop_custom_cleanup_scope(argument_scope);
bcx
}
fn int_cast(bcx: &Block,
lldsttype: Type,
llsrctype: Type,

View File

@ -1353,6 +1353,61 @@ pub fn autoderef<T>(fcx: &FnCtxt, sp: Span, base_ty: ty::t,
(ty::mk_err(), 0, None)
}
/// Attempts to resolve a call expression as an overloaded call.
fn try_overloaded_call(fcx: &FnCtxt,
call_expression: &ast::Expr,
callee: @ast::Expr,
callee_type: ty::t,
args: &[@ast::Expr])
-> bool {
// Try `FnOnce`, then `FnMut`, then `Fn`.
for &(maybe_function_trait, method_name) in [
(fcx.tcx().lang_items.fn_once_trait(), token::intern("call_once")),
(fcx.tcx().lang_items.fn_mut_trait(), token::intern("call_mut")),
(fcx.tcx().lang_items.fn_trait(), token::intern("call"))
].iter() {
let function_trait = match maybe_function_trait {
None => continue,
Some(function_trait) => function_trait,
};
let method_callee = match method::lookup_in_trait(
fcx,
call_expression.span,
Some(&*callee),
method_name,
function_trait,
callee_type,
[],
DontAutoderefReceiver,
IgnoreStaticMethods) {
None => continue,
Some(method_callee) => method_callee,
};
let method_call = MethodCall::expr(call_expression.id);
let output_type = check_method_argument_types(fcx,
call_expression.span,
method_callee.ty,
call_expression,
args,
DontDerefArgs,
TupleArguments);
fcx.inh.method_map.borrow_mut().insert(method_call, method_callee);
write_call(fcx, call_expression, output_type);
if !fcx.tcx().sess.features.overloaded_calls.get() {
fcx.tcx().sess.span_err(call_expression.span,
"overloaded calls are experimental");
fcx.tcx().sess.span_note(call_expression.span,
"add `#[feature(overloaded_calls)]` to \
the crate attributes to enable");
}
return true
}
false
}
fn try_overloaded_deref(fcx: &FnCtxt,
span: Span,
method_call: Option<MethodCall>,
@ -1395,6 +1450,261 @@ fn try_overloaded_deref(fcx: &FnCtxt,
}
}
fn check_method_argument_types(fcx: &FnCtxt,
sp: Span,
method_fn_ty: ty::t,
callee_expr: &ast::Expr,
args: &[@ast::Expr],
deref_args: DerefArgs,
tuple_arguments: TupleArgumentsFlag)
-> ty::t {
// HACK(eddyb) ignore provided self (it has special typeck rules).
let args = if tuple_arguments == DontTupleArguments {
args.slice_from(1)
} else {
args
};
if ty::type_is_error(method_fn_ty) {
let err_inputs = err_args(args.len());
check_argument_types(fcx,
sp,
err_inputs.as_slice(),
callee_expr,
args,
deref_args,
false,
tuple_arguments);
method_fn_ty
} else {
match ty::get(method_fn_ty).sty {
ty::ty_bare_fn(ref fty) => {
// HACK(eddyb) ignore self in the definition (see above).
check_argument_types(fcx,
sp,
fty.sig.inputs.slice_from(1),
callee_expr,
args,
deref_args,
fty.sig.variadic,
tuple_arguments);
fty.sig.output
}
_ => {
fcx.tcx().sess.span_bug(callee_expr.span,
"method without bare fn type");
}
}
}
}
fn check_argument_types(fcx: &FnCtxt,
sp: Span,
fn_inputs: &[ty::t],
callee_expr: &ast::Expr,
args: &[@ast::Expr],
deref_args: DerefArgs,
variadic: bool,
tuple_arguments: TupleArgumentsFlag) {
/*!
*
* Generic function that factors out common logic from
* function calls, method calls and overloaded operators.
*/
let tcx = fcx.ccx.tcx;
// Grab the argument types, supplying fresh type variables
// if the wrong number of arguments were supplied
let supplied_arg_count = if tuple_arguments == DontTupleArguments {
args.len()
} else {
1
};
let expected_arg_count = fn_inputs.len();
let formal_tys = if tuple_arguments == TupleArguments {
let tuple_type = structurally_resolved_type(fcx, sp, fn_inputs[0]);
match ty::get(tuple_type).sty {
ty::ty_tup(ref arg_types) => {
if arg_types.len() != args.len() {
let msg = format!(
"this function takes \
{nexpected, plural, =1{# parameter} \
other{# parameters}} \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nexpected = arg_types.len(),
nsupplied = args.len());
tcx.sess.span_err(sp, msg.as_slice());
err_args(args.len())
} else {
(*arg_types).clone()
}
}
ty::ty_nil => {
if args.len() != 0 {
let msg = format!(
"this function takes 0 parameters \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nsupplied = args.len());
tcx.sess.span_err(sp, msg.as_slice());
}
Vec::new()
}
_ => {
tcx.sess
.span_err(sp,
"cannot use call notation; the first type \
parameter for the function trait is neither a \
tuple nor unit");
err_args(supplied_arg_count)
}
}
} else if expected_arg_count == supplied_arg_count {
fn_inputs.iter().map(|a| *a).collect()
} else if variadic {
if supplied_arg_count >= expected_arg_count {
fn_inputs.iter().map(|a| *a).collect()
} else {
let msg = format!(
"this function takes at least {nexpected, plural, =1{# parameter} \
other{# parameters}} \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nexpected = expected_arg_count,
nsupplied = supplied_arg_count);
tcx.sess.span_err(sp, msg.as_slice());
err_args(supplied_arg_count)
}
} else {
let msg = format!(
"this function takes {nexpected, plural, =1{# parameter} \
other{# parameters}} \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nexpected = expected_arg_count,
nsupplied = supplied_arg_count);
tcx.sess.span_err(sp, msg.as_slice());
err_args(supplied_arg_count)
};
debug!("check_argument_types: formal_tys={:?}",
formal_tys.iter().map(|t| fcx.infcx().ty_to_str(*t)).collect::<Vec<String>>());
// Check the arguments.
// We do this in a pretty awful way: first we typecheck any arguments
// that are not anonymous functions, then we typecheck the anonymous
// functions. This is so that we have more information about the types
// of arguments when we typecheck the functions. This isn't really the
// right way to do this.
let xs = [false, true];
for check_blocks in xs.iter() {
let check_blocks = *check_blocks;
debug!("check_blocks={}", check_blocks);
// More awful hacks: before we check the blocks, try to do
// an "opportunistic" vtable resolution of any trait
// bounds on the call.
if check_blocks {
vtable::early_resolve_expr(callee_expr, fcx, true);
}
// For variadic functions, we don't have a declared type for all of
// the arguments hence we only do our usual type checking with
// the arguments who's types we do know.
let t = if variadic {
expected_arg_count
} else if tuple_arguments == TupleArguments {
args.len()
} else {
supplied_arg_count
};
for (i, arg) in args.iter().take(t).enumerate() {
let is_block = match arg.node {
ast::ExprFnBlock(..) |
ast::ExprProc(..) => true,
_ => false
};
if is_block == check_blocks {
debug!("checking the argument");
let mut formal_ty = *formal_tys.get(i);
match deref_args {
DoDerefArgs => {
match ty::get(formal_ty).sty {
ty::ty_rptr(_, mt) => formal_ty = mt.ty,
ty::ty_err => (),
_ => {
// So we hit this case when one implements the
// operator traits but leaves an argument as
// just T instead of &T. We'll catch it in the
// mismatch impl/trait method phase no need to
// ICE here.
// See: #11450
formal_ty = ty::mk_err();
}
}
}
DontDerefArgs => {}
}
check_expr_coercable_to_type(fcx, *arg, formal_ty);
}
}
}
// We also need to make sure we at least write the ty of the other
// arguments which we skipped above.
if variadic {
for arg in args.iter().skip(expected_arg_count) {
check_expr(fcx, *arg);
// There are a few types which get autopromoted when passed via varargs
// in C but we just error out instead and require explicit casts.
let arg_ty = structurally_resolved_type(fcx, arg.span, fcx.expr_ty(*arg));
match ty::get(arg_ty).sty {
ty::ty_float(ast::TyF32) => {
fcx.type_error_message(arg.span,
|t| {
format!("can't pass an {} to variadic \
function, cast to c_double", t)
}, arg_ty, None);
}
ty::ty_int(ast::TyI8) | ty::ty_int(ast::TyI16) | ty::ty_bool => {
fcx.type_error_message(arg.span, |t| {
format!("can't pass {} to variadic \
function, cast to c_int",
t)
}, arg_ty, None);
}
ty::ty_uint(ast::TyU8) | ty::ty_uint(ast::TyU16) => {
fcx.type_error_message(arg.span, |t| {
format!("can't pass {} to variadic \
function, cast to c_uint",
t)
}, arg_ty, None);
}
_ => {}
}
}
}
}
fn err_args(len: uint) -> Vec<ty::t> {
Vec::from_fn(len, |_| ty::mk_err())
}
fn write_call(fcx: &FnCtxt, call_expr: &ast::Expr, output: ty::t) {
fcx.write_ty(call_expr.id, output);
}
// AST fragment checking
pub fn check_lit(fcx: &FnCtxt, lit: &ast::Lit) -> ty::t {
let tcx = fcx.ccx.tcx;
@ -1521,6 +1831,28 @@ pub enum DerefArgs {
DoDerefArgs
}
/// Controls whether the arguments are tupled. This is used for the call
/// operator.
///
/// Tupling means that all call-side arguments are packed into a tuple and
/// passed as a single parameter. For example, if tupling is enabled, this
/// function:
///
/// fn f(x: (int, int))
///
/// Can be called as:
///
/// f(1, 2);
///
/// Instead of:
///
/// f((1, 2));
#[deriving(Clone, Eq, PartialEq)]
enum TupleArgumentsFlag {
DontTupleArguments,
TupleArguments,
}
// Given the provenance of a static method, returns the generics of the static
// method's container.
fn generics_of_static_method_container(type_context: &ty::ctxt,
@ -1704,207 +2036,11 @@ fn check_expr_with_unifier(fcx: &FnCtxt,
unifier: ||) {
debug!(">> typechecking");
fn check_method_argument_types(
fcx: &FnCtxt,
sp: Span,
method_fn_ty: ty::t,
callee_expr: &ast::Expr,
args: &[@ast::Expr],
deref_args: DerefArgs) -> ty::t {
// HACK(eddyb) ignore provided self (it has special typeck rules).
let args = args.slice_from(1);
if ty::type_is_error(method_fn_ty) {
let err_inputs = err_args(args.len());
check_argument_types(fcx, sp, err_inputs.as_slice(), callee_expr,
args, deref_args, false);
method_fn_ty
} else {
match ty::get(method_fn_ty).sty {
ty::ty_bare_fn(ref fty) => {
// HACK(eddyb) ignore self in the definition (see above).
check_argument_types(fcx, sp, fty.sig.inputs.slice_from(1),
callee_expr, args, deref_args,
fty.sig.variadic);
fty.sig.output
}
_ => {
fcx.tcx().sess.span_bug(callee_expr.span,
"method without bare fn type");
}
}
}
}
fn check_argument_types(fcx: &FnCtxt,
sp: Span,
fn_inputs: &[ty::t],
callee_expr: &ast::Expr,
args: &[@ast::Expr],
deref_args: DerefArgs,
variadic: bool) {
/*!
*
* Generic function that factors out common logic from
* function calls, method calls and overloaded operators.
*/
let tcx = fcx.ccx.tcx;
// Grab the argument types, supplying fresh type variables
// if the wrong number of arguments were supplied
let supplied_arg_count = args.len();
let expected_arg_count = fn_inputs.len();
let formal_tys = if expected_arg_count == supplied_arg_count {
fn_inputs.iter().map(|a| *a).collect()
} else if variadic {
if supplied_arg_count >= expected_arg_count {
fn_inputs.iter().map(|a| *a).collect()
} else {
let msg = format!(
"this function takes at least {nexpected, plural, =1{# parameter} \
other{# parameters}} \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nexpected = expected_arg_count,
nsupplied = supplied_arg_count);
tcx.sess.span_err(sp, msg.as_slice());
err_args(supplied_arg_count)
}
} else {
let msg = format!(
"this function takes {nexpected, plural, =1{# parameter} \
other{# parameters}} \
but {nsupplied, plural, =1{# parameter was} \
other{# parameters were}} supplied",
nexpected = expected_arg_count,
nsupplied = supplied_arg_count);
tcx.sess.span_err(sp, msg.as_slice());
err_args(supplied_arg_count)
};
debug!("check_argument_types: formal_tys={:?}",
formal_tys.iter().map(|t| fcx.infcx().ty_to_str(*t)).collect::<Vec<String>>());
// Check the arguments.
// We do this in a pretty awful way: first we typecheck any arguments
// that are not anonymous functions, then we typecheck the anonymous
// functions. This is so that we have more information about the types
// of arguments when we typecheck the functions. This isn't really the
// right way to do this.
let xs = [false, true];
for check_blocks in xs.iter() {
let check_blocks = *check_blocks;
debug!("check_blocks={}", check_blocks);
// More awful hacks: before we check the blocks, try to do
// an "opportunistic" vtable resolution of any trait
// bounds on the call.
if check_blocks {
vtable::early_resolve_expr(callee_expr, fcx, true);
}
// For variadic functions, we don't have a declared type for all of
// the arguments hence we only do our usual type checking with
// the arguments who's types we do know.
let t = if variadic {
expected_arg_count
} else {
supplied_arg_count
};
for (i, arg) in args.iter().take(t).enumerate() {
let is_block = match arg.node {
ast::ExprFnBlock(..) |
ast::ExprProc(..) => true,
_ => false
};
if is_block == check_blocks {
debug!("checking the argument");
let mut formal_ty = *formal_tys.get(i);
match deref_args {
DoDerefArgs => {
match ty::get(formal_ty).sty {
ty::ty_rptr(_, mt) => formal_ty = mt.ty,
ty::ty_err => (),
_ => {
// So we hit this case when one implements the
// operator traits but leaves an argument as
// just T instead of &T. We'll catch it in the
// mismatch impl/trait method phase no need to
// ICE here.
// See: #11450
formal_ty = ty::mk_err();
}
}
}
DontDerefArgs => {}
}
check_expr_coercable_to_type(fcx, *arg, formal_ty);
}
}
}
// We also need to make sure we at least write the ty of the other
// arguments which we skipped above.
if variadic {
for arg in args.iter().skip(expected_arg_count) {
check_expr(fcx, *arg);
// There are a few types which get autopromoted when passed via varargs
// in C but we just error out instead and require explicit casts.
let arg_ty = structurally_resolved_type(fcx, arg.span, fcx.expr_ty(*arg));
match ty::get(arg_ty).sty {
ty::ty_float(ast::TyF32) => {
fcx.type_error_message(arg.span,
|t| {
format!("can't pass an {} to variadic \
function, cast to c_double", t)
}, arg_ty, None);
}
ty::ty_int(ast::TyI8) | ty::ty_int(ast::TyI16) | ty::ty_bool => {
fcx.type_error_message(arg.span, |t| {
format!("can't pass {} to variadic \
function, cast to c_int",
t)
}, arg_ty, None);
}
ty::ty_uint(ast::TyU8) | ty::ty_uint(ast::TyU16) => {
fcx.type_error_message(arg.span, |t| {
format!("can't pass {} to variadic \
function, cast to c_uint",
t)
}, arg_ty, None);
}
_ => {}
}
}
}
}
fn err_args(len: uint) -> Vec<ty::t> {
Vec::from_fn(len, |_| ty::mk_err())
}
fn write_call(fcx: &FnCtxt, call_expr: &ast::Expr, output: ty::t) {
fcx.write_ty(call_expr.id, output);
}
// A generic function for doing all of the checking for call expressions
fn check_call(fcx: &FnCtxt,
call_expr: &ast::Expr,
f: &ast::Expr,
args: &[@ast::Expr]) {
// Index expressions need to be handled separately, to inform them
// that they appear in call position.
check_expr(fcx, f);
// Store the type of `f` as the type of the callee
let fn_ty = fcx.expr_ty(f);
@ -1939,8 +2075,14 @@ fn check_expr_with_unifier(fcx: &FnCtxt,
});
// Call the generic checker.
check_argument_types(fcx, call_expr.span, fn_sig.inputs.as_slice(), f,
args, DontDerefArgs, fn_sig.variadic);
check_argument_types(fcx,
call_expr.span,
fn_sig.inputs.as_slice(),
f,
args,
DontDerefArgs,
fn_sig.variadic,
DontTupleArguments);
write_call(fcx, call_expr, fn_sig.output);
}
@ -2008,9 +2150,13 @@ fn check_expr_with_unifier(fcx: &FnCtxt,
};
// Call the generic checker.
let ret_ty = check_method_argument_types(fcx, method_name.span,
fn_ty, expr, args,
DontDerefArgs);
let ret_ty = check_method_argument_types(fcx,
method_name.span,
fn_ty,
expr,
args,
DontDerefArgs,
DontTupleArguments);
write_call(fcx, expr, ret_ty);
}
@ -2078,18 +2224,26 @@ fn check_expr_with_unifier(fcx: &FnCtxt,
// HACK(eddyb) Fully qualified path to work around a resolve bug.
let method_call = ::middle::typeck::MethodCall::expr(op_ex.id);
fcx.inh.method_map.borrow_mut().insert(method_call, method);
check_method_argument_types(fcx, op_ex.span,
method_ty, op_ex,
args, DoDerefArgs)
check_method_argument_types(fcx,
op_ex.span,
method_ty,
op_ex,
args,
DoDerefArgs,
DontTupleArguments)
}
None => {
unbound_method();
// Check the args anyway
// so we get all the error messages
let expected_ty = ty::mk_err();
check_method_argument_types(fcx, op_ex.span,
expected_ty, op_ex,
args, DoDerefArgs);
check_method_argument_types(fcx,
op_ex.span,
expected_ty,
op_ex,
args,
DoDerefArgs,
DontTupleArguments);
ty::mk_err()
}
}
@ -3045,19 +3199,25 @@ fn check_expr_with_unifier(fcx: &FnCtxt,
fcx.write_ty(id, fcx.node_ty(b.id));
}
ast::ExprCall(f, ref args) => {
check_call(fcx, expr, f, args.as_slice());
// Index expressions need to be handled separately, to inform them
// that they appear in call position.
check_expr(fcx, f);
let f_ty = fcx.expr_ty(f);
let (args_bot, args_err) = args.iter().fold((false, false),
|(rest_bot, rest_err), a| {
// is this not working?
let a_ty = fcx.expr_ty(*a);
(rest_bot || ty::type_is_bot(a_ty),
rest_err || ty::type_is_error(a_ty))});
if ty::type_is_error(f_ty) || args_err {
fcx.write_error(id);
}
else if ty::type_is_bot(f_ty) || args_bot {
fcx.write_bot(id);
if !try_overloaded_call(fcx, expr, f, f_ty, args.as_slice()) {
check_call(fcx, expr, f, args.as_slice());
let (args_bot, args_err) = args.iter().fold((false, false),
|(rest_bot, rest_err), a| {
// is this not working?
let a_ty = fcx.expr_ty(*a);
(rest_bot || ty::type_is_bot(a_ty),
rest_err || ty::type_is_error(a_ty))});
if ty::type_is_error(f_ty) || args_err {
fcx.write_error(id);
}
else if ty::type_is_bot(f_ty) || args_bot {
fcx.write_bot(id);
}
}
}
ast::ExprMethodCall(ident, ref tps, ref args) => {

View File

@ -442,13 +442,15 @@ fn visit_expr(rcx: &mut Rcx, expr: &ast::Expr) {
match expr.node {
ast::ExprCall(callee, ref args) => {
constrain_callee(rcx, callee.id, expr, callee);
constrain_call(rcx,
Some(callee.id),
expr,
None,
args.as_slice(),
false);
if !has_method_map {
constrain_callee(rcx, callee.id, expr, callee);
constrain_call(rcx,
Some(callee.id),
expr,
None,
args.as_slice(),
false);
}
visit::walk_expr(rcx, expr, ());
}

View File

@ -0,0 +1,35 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(overloaded_calls)]
use std::ops::FnMut;
struct S {
x: int,
y: int,
}
impl FnMut<(int,),int> for S {
fn call_mut(&mut self, (z,): (int,)) -> int {
self.x * self.y * z
}
}
fn main() {
let mut s = S {
x: 3,
y: 3,
};
let ans = s("what"); //~ ERROR mismatched types
let ans = s(); //~ ERROR this function takes 1 parameter but 0 parameters were supplied
let ans = s("burma", "shave");
//~^ ERROR this function takes 1 parameter but 2 parameters were supplied
}

View File

@ -0,0 +1,33 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(overloaded_calls)]
use std::ops::FnMut;
struct S {
x: int,
y: int,
}
impl FnMut<int,int> for S {
fn call_mut(&mut self, z: int) -> int {
self.x + self.y + z
}
}
fn main() {
let mut s = S {
x: 1,
y: 2,
};
drop(s(3)) //~ ERROR cannot use call notation
}

View File

@ -0,0 +1,70 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(overloaded_calls)]
use std::ops::{Fn, FnMut, FnOnce};
struct S1 {
x: int,
y: int,
}
impl FnMut<(int,),int> for S1 {
fn call_mut(&mut self, (z,): (int,)) -> int {
self.x * self.y * z
}
}
struct S2 {
x: int,
y: int,
}
impl Fn<(int,),int> for S2 {
fn call(&self, (z,): (int,)) -> int {
self.x * self.y * z
}
}
struct S3 {
x: int,
y: int,
}
impl FnOnce<(int,int),int> for S3 {
fn call_once(self, (z,zz): (int,int)) -> int {
self.x * self.y * z * zz
}
}
fn main() {
let mut s = S1 {
x: 3,
y: 3,
};
let ans = s(3);
assert_eq!(ans, 27);
let s = S2 {
x: 3,
y: 3,
};
let ans = s(3);
assert_eq!(ans, 27);
let s = S3 {
x: 3,
y: 3,
};
let ans = s(3, 1);
assert_eq!(ans, 27);
}

View File

@ -0,0 +1,35 @@
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(overloaded_calls)]
use std::ops::{FnMut};
struct S {
x: int,
y: int,
}
impl FnMut<(),int> for S {
fn call_mut(&mut self, (): ()) -> int {
self.x * self.y
}
}
fn main() {
let mut s = S {
x: 3,
y: 3,
};
let ans = s();
assert_eq!(ans, 9);
}