Expose the features computed from LLVM in cfg!

Instead of relying on the features explicitly passed through the
command line, compute them from the LLVM `TargetMachine`.
This commit is contained in:
Andrea Canciani 2016-02-16 17:09:17 +01:00
parent c883463e94
commit 92e24b9516

View File

@ -9,79 +9,47 @@
// except according to those terms.
use syntax::{ast, attr};
use llvm::LLVMRustHasFeature;
use rustc::session::Session;
use rustc_trans::back::write::create_target_machine;
use syntax::parse::token::InternedString;
use syntax::parse::token::intern_and_get_ident as intern;
use libc::c_char;
/// Add `target_feature = "..."` cfgs for a variety of platform
/// specific features (SSE, NEON etc.).
///
/// This uses a scheme similar to that employed by clang: reimplement
/// the target feature knowledge. *Theoretically* we could query LLVM
/// since that has perfect knowledge about what things are enabled in
/// code-generation, however, it is extremely non-obvious how to do
/// this successfully. Each platform defines a subclass of a
/// SubtargetInfo, which knows all this information, but the ways to
/// query them do not seem to be public.
/// This is performed by checking whether a whitelisted set of
/// features is available on the target machine, by querying LLVM.
pub fn add_configuration(cfg: &mut ast::CrateConfig, sess: &Session) {
let target_machine = create_target_machine(sess);
let arm_whitelist = [
"neon\0",
"vfp\0",
];
let x86_whitelist = [
"avx\0",
"avx2\0",
"sse\0",
"sse2\0",
"sse3\0",
"sse4.1\0",
"sse4.2\0",
"ssse3\0",
];
let whitelist = match &*sess.target.target.arch {
"arm" => &arm_whitelist[..],
"x86" | "x86_64" => &x86_whitelist[..],
_ => &[][..],
};
let tf = InternedString::new("target_feature");
macro_rules! fillout {
($($func: ident, $name: expr;)*) => {{
$(if $func(sess) {
cfg.push(attr::mk_name_value_item_str(tf.clone(), intern($name)))
})*
}}
}
fillout! {
has_sse, "sse";
has_sse2, "sse2";
has_sse3, "sse3";
has_ssse3, "ssse3";
has_sse41, "sse4.1";
has_sse42, "sse4.2";
has_avx, "avx";
has_avx2, "avx2";
has_neon, "neon";
has_vfp, "vfp";
for feat in whitelist {
if unsafe { LLVMRustHasFeature(target_machine, feat.as_ptr() as *const c_char) } {
cfg.push(attr::mk_name_value_item_str(tf.clone(), intern(feat)))
}
}
}
fn features_contain(sess: &Session, s: &str) -> bool {
sess.target.target.options.features.contains(s) || sess.opts.cg.target_feature.contains(s)
}
pub fn has_sse(sess: &Session) -> bool {
features_contain(sess, "+sse") || has_sse2(sess)
}
pub fn has_sse2(sess: &Session) -> bool {
// x86-64 requires at least SSE2 support
sess.target.target.arch == "x86_64" || features_contain(sess, "+sse2") || has_sse3(sess)
}
pub fn has_sse3(sess: &Session) -> bool {
features_contain(sess, "+sse3") || has_ssse3(sess)
}
pub fn has_ssse3(sess: &Session) -> bool {
features_contain(sess, "+ssse3") || has_sse41(sess)
}
pub fn has_sse41(sess: &Session) -> bool {
features_contain(sess, "+sse4.1") || has_sse42(sess)
}
pub fn has_sse42(sess: &Session) -> bool {
features_contain(sess, "+sse4.2") || has_avx(sess)
}
pub fn has_avx(sess: &Session) -> bool {
features_contain(sess, "+avx") || has_avx2(sess)
}
pub fn has_avx2(sess: &Session) -> bool {
features_contain(sess, "+avx2")
}
pub fn has_neon(sess: &Session) -> bool {
// AArch64 requires NEON support
sess.target.target.arch == "aarch64" || features_contain(sess, "+neon")
}
pub fn has_vfp(sess: &Session) -> bool {
// AArch64 requires VFP support
sess.target.target.arch == "aarch64" || features_contain(sess, "+vfp")
}