Merge pull request #1350 from boggle/kmath

removed math leftovers from std
This commit is contained in:
Graydon Hoare 2011-12-20 12:28:07 -08:00
commit 96d7f83eb0
11 changed files with 8 additions and 850 deletions

View File

@ -3,7 +3,6 @@ import std::fs;
import std::os_fs;
import vec;
import std::map;
import std::math;
import str;
import uint;
import metadata::cstore;
@ -129,7 +128,7 @@ fn get_relative_to(abs1: fs::path, abs2: fs::path) -> fs::path {
assert len1 > 0u;
assert len2 > 0u;
let max_common_path = math::min(len1, len2) - 1u;
let max_common_path = float::min(len1, len2) - 1u;
let start_idx = 0u;
while start_idx < max_common_path
&& split1[start_idx] == split2[start_idx] {

View File

@ -4,7 +4,6 @@ import uint;
import std::ufind;
import std::map;
import std::map::hashmap;
import std::math;
import option;
import option::none;
import option::some;
@ -1755,7 +1754,7 @@ mod unify {
// Unifies two sets.
fn union(cx: @ctxt, set_a: uint, set_b: uint,
variance: variance) -> union_result {
ufind::grow(cx.vb.sets, math::max(set_a, set_b) + 1u);
ufind::grow(cx.vb.sets, float::max(set_a, set_b) + 1u);
let root_a = ufind::find(cx.vb.sets, set_a);
let root_b = ufind::find(cx.vb.sets, set_b);

View File

@ -1,5 +1,5 @@
import core::{str, option};
import std::math::{max, min};
import core::float::{max, min};
import std::map::hashmap;
import option::{some};
import syntax::ast;

View File

@ -1,5 +1,5 @@
import core::{vec, str, int, uint, option, result};
import std::{fs, io, math};
import std::{fs, io};
import rustc::syntax::{ast, ast_util, fold, visit, codemap};
import rustc::syntax::parse::parser;
@ -241,9 +241,9 @@ fn check_variants_T<copy T>(
let L = vec::len(things);
if L < 100u {
under(math::min(L, 20u)) {|i|
under(float::min(L, 20u)) {|i|
log_err "Replacing... #" + uint::str(i);
under(math::min(L, 30u)) {|j|
under(float::min(L, 30u)) {|j|
log_err "With... " + stringifier(@things[j]);
let crate2 = @replacer(crate, i, things[j], cx.mode);
// It would be best to test the *crate* for stability, but testing the

View File

@ -1,71 +0,0 @@
import ctypes::c_int;
#[link_name = "m"]
#[abi = "cdecl"]
native mod f64 {
// Alpabetically sorted by link_name
pure fn acos(n: f64) -> f64;
pure fn asin(n: f64) -> f64;
pure fn atan(n: f64) -> f64;
pure fn atan2(a: f64, b: f64) -> f64;
pure fn ceil(n: f64) -> f64;
pure fn cos(n: f64) -> f64;
pure fn cosh(n: f64) -> f64;
pure fn exp(n: f64) -> f64;
#[link_name="fabs"] pure fn abs(n: f64) -> f64;
pure fn floor(n: f64) -> f64;
pure fn fmod(x: f64, y: f64) -> f64;
pure fn frexp(n: f64, &value: c_int) -> f64;
pure fn ldexp(x: f64, n: c_int) -> f64;
#[link_name="log"] pure fn ln(n: f64) -> f64;
#[link_name="log1p"] pure fn ln1p(n: f64) -> f64;
pure fn log10(n: f64) -> f64;
pure fn log2(n: f64) -> f64;
pure fn modf(n: f64, iptr: *f64) -> f64;
pure fn pow(n: f64, e: f64) -> f64;
pure fn rint(n: f64) -> f64;
pure fn round(n: f64) -> f64;
pure fn sin(n: f64) -> f64;
pure fn sinh(n: f64) -> f64;
pure fn sqrt(n: f64) -> f64;
pure fn tan(n: f64) -> f64;
pure fn tanh(n: f64) -> f64;
pure fn trunc(n: f64) -> f64;
}
#[link_name = "m"]
#[abi = "cdecl"]
native mod f32 {
// Alpabetically sorted by link_name
#[link_name="acosf"] pure fn acos(n: f32) -> f32;
#[link_name="asinf"] pure fn asin(n: f32) -> f32;
#[link_name="atanf"] pure fn atan(n: f32) -> f32;
#[link_name="atan2f"] pure fn atan2(a: f32, b: f32) -> f32;
#[link_name="ceilf"] pure fn ceil(n: f32) -> f32;
#[link_name="cosf"] pure fn cos(n: f32) -> f32;
#[link_name="coshf"] pure fn cosh(n: f32) -> f32;
#[link_name="expf"] pure fn exp(n: f32) -> f32;
#[link_name="fabsf"] pure fn abs(n: f32) -> f32;
#[link_name="floorf"] pure fn floor(n: f32) -> f32;
#[link_name="frexpf"] pure fn frexp(n: f64, &value: c_int) -> f32;
#[link_name="fmodf"] pure fn fmod(x: f32, y: f32) -> f32;
#[link_name="ldexpf"] pure fn ldexp(x: f32, n: c_int) -> f32;
#[link_name="logf"] pure fn ln(n: f32) -> f32;
#[link_name="log1p"] pure fn ln1p(n: f64) -> f64;
#[link_name="log2f"] pure fn log2(n: f32) -> f32;
#[link_name="log10f"] pure fn log10(n: f32) -> f32;
#[link_name="modff"] pure fn modf(n: f32, iptr: *f32) -> f32;
#[link_name="powf"] pure fn pow(n: f32, e: f32) -> f32;
#[link_name="rintf"] pure fn rint(n: f32) -> f32;
#[link_name="roundf"] pure fn round(n: f32) -> f32;
#[link_name="sinf"] pure fn sin(n: f32) -> f32;
#[link_name="sinhf"] pure fn sinh(n: f32) -> f32;
#[link_name="sqrtf"] pure fn sqrt(n: f32) -> f32;
#[link_name="tanf"] pure fn tan(n: f32) -> f32;
#[link_name="tanhf"] pure fn tanh(n: f32) -> f32;
#[link_name="truncf"] pure fn trunc(n: f32) -> f32;
}

View File

@ -1,146 +0,0 @@
/*
Module: ctypes
Definitions useful for C interop
*/
/*
FIXME: Add a test that uses some native code to verify these sizes,
which are not obviously correct for all potential platforms.
*/
/*
Type: c_int
A signed integer with the same size as a C `int`
*/
type c_int = i32;
/*
Type: c_uint
An unsigned integer with the same size as a C `unsigned int`
*/
type c_uint = u32;
/*
Type: long
A signed integer with the same size as a C `long`
*/
type long = int;
/*
Type: unsigned
An unsigned integer with the same size as a C `unsigned int`
*/
type unsigned = u32;
/*
Type: ulong
An unsigned integer with the same size as a C `unsigned long`
*/
type ulong = uint;
/*
Type: intptr_t
A signed integer with the same size as a pointer. This is
guaranteed to always be the same type as a Rust `int`
*/
type intptr_t = uint; // FIXME: int
/*
Type: uintptr_t
An unsigned integer with the same size as a pointer. This is
guaranteed to always be the same type as a Rust `uint`.
*/
type uintptr_t = uint;
type uint32_t = u32;
/*
Type: void
A type, a pointer to which can be used as C `void *`
Note that this does not directly correspond to the C `void` type,
which is an incomplete type. Using pointers to this type
when interoperating with C void pointers can help in documentation.
*/
type void = int;
// machine type equivalents of rust int, uint, float
/*
Type: m_int
FIXME: What C type does this represent?
*/
#[cfg(target_arch="x86")]
type m_int = i32;
#[cfg(target_arch="x86_64")]
type m_int = i64;
/*
Type: m_uint
FIXME: What C type does this represent?
*/
#[cfg(target_arch="x86")]
type m_uint = u32;
#[cfg(target_arch="x86_64")]
type m_uint = u64;
// This *must* match with "import m_float = fXX" in std::math per arch
/*
Type: m_float
FIXME: What C type does this represent?
*/
type m_float = f64;
/*
Type: size_t
An unsigned integer corresponding to the C `size_t`
*/
type size_t = uint;
/*
Type: ssize_t
A signed integer correpsonding to the C `ssize_t`
*/
type ssize_t = int;
/*
Type: off_t
An unsigned integer corresponding to the C `off_t`
*/
type off_t = uint;
/*
Type: fd_t
A type that can be used for C file descriptors
*/
type fd_t = i32; // not actually a C type, but should be.
/*
Type: pid_t
A type for representing process ID's, corresponding to C `pid_t`
*/
type pid_t = i32;
// enum is implementation-defined, but is 32-bits in practice
/*
Type: enum
An unsigned integer with the same size as a C enum
*/
type enum = u32;

View File

@ -1,390 +0,0 @@
/*
Module: math
Floating point operations and constants for `float`s
*/
export consts;
export min, max;
// Currently this module supports from -lmath:
// C95 + log2 + log1p + trunc + round + rint
export
acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod, frexp,
ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin, sinh, sqrt,
tan, tanh, trunc;
export f64, f32;
import f64 = math_f64;
import f32 = math_f32;
// These two must match in width according to architecture
import core::mtypes::m_float;
import core::ctypes::c_int;
import core::ptr;
import m_float = math_f64;
/*
Module: consts
*/
mod consts {
/*
Const: pi
Archimedes' constant
*/
const pi: float = 3.14159265358979323846264338327950288;
/*
Const: frac_pi_2
pi/2.0
*/
const frac_pi_2: float = 1.57079632679489661923132169163975144;
/*
Const: frac_pi_4
pi/4.0
*/
const frac_pi_4: float = 0.785398163397448309615660845819875721;
/*
Const: frac_1_pi
1.0/pi
*/
const frac_1_pi: float = 0.318309886183790671537767526745028724;
/*
Const: frac_2_pi
2.0/pi
*/
const frac_2_pi: float = 0.636619772367581343075535053490057448;
/*
Const: frac_2_sqrtpi
2.0/sqrt(pi)
*/
const frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;
/*
Const: sqrt2
sqrt(2.0)
*/
const sqrt2: float = 1.41421356237309504880168872420969808;
/*
Const: frac_1_sqrt2
1.0/sqrt(2.0)
*/
const frac_1_sqrt2: float = 0.707106781186547524400844362104849039;
/*
Const: e
Euler's number
*/
const e: float = 2.71828182845904523536028747135266250;
/*
Const: log2_e
log2(e)
*/
const log2_e: float = 1.44269504088896340735992468100189214;
/*
Const: log10_e
log10(e)
*/
const log10_e: float = 0.434294481903251827651128918916605082;
/*
Const: ln_2
ln(2.0)
*/
const ln_2: float = 0.693147180559945309417232121458176568;
/*
Const: ln_10
ln(10.0)
*/
const ln_10: float = 2.30258509299404568401799145468436421;
}
// FIXME min/max type specialize via libm when overloading works
// (in theory fmax/fmin, fmaxf, fminf /should/ be faster)
/*
Function: min
Returns the minimum of two values
*/
pure fn min<copy T>(x: T, y: T) -> T { x < y ? x : y }
/*
Function: max
Returns the maximum of two values
*/
pure fn max<copy T>(x: T, y: T) -> T { x < y ? y : x }
/*
Function: acos
Returns the arccosine of an angle (measured in rad)
*/
pure fn acos(x: float) -> float
{ be m_float::acos(x as m_float) as float }
/*
Function: asin
Returns the arcsine of an angle (measured in rad)
*/
pure fn asin(x: float) -> float
{ be m_float::asin(x as m_float) as float }
/*
Function: atan
Returns the arctangents of an angle (measured in rad)
*/
pure fn atan(x: float) -> float
{ be m_float::atan(x as m_float) as float }
/*
Function: atan2
Returns the arctangent of an angle (measured in rad)
*/
pure fn atan2(y: float, x: float) -> float
{ be m_float::atan2(y as m_float, x as m_float) as float }
/*
Function: ceil
Returns the smallest integral value less than or equal to `n`
*/
pure fn ceil(n: float) -> float
{ be m_float::ceil(n as m_float) as float }
/*
Function: cos
Returns the cosine of an angle `x` (measured in rad)
*/
pure fn cos(x: float) -> float
{ be m_float::cos(x as m_float) as float }
/*
Function: cosh
Returns the hyperbolic cosine of `x`
*/
pure fn cosh(x: float) -> float
{ be m_float::cosh(x as m_float) as float }
/*
Function: exp
Returns `consts::e` to the power of `n*
*/
pure fn exp(n: float) -> float
{ be m_float::exp(n as m_float) as float }
/*
Function: abs
Returns the absolute value of `n`
*/
pure fn abs(n: float) -> float
{ be m_float::abs(n as m_float) as float }
/*
Function: floor
Returns the largest integral value less than or equal to `n`
*/
pure fn floor(n: float) -> float
{ be m_float::floor(n as m_float) as float }
/*
Function: fmod
Returns the floating-point remainder of `x/y`
*/
pure fn fmod(x: float, y: float) -> float
{ be m_float::fmod(x as m_float, y as m_float) as float }
/*
Function: ln
Returns the natural logaritm of `n`
*/
pure fn ln(n: float) -> float
{ be m_float::ln(n as m_float) as float }
/*
Function: ldexp
Returns `x` multiplied by 2 to the power of `n`
*/
pure fn ldexp(n: float, i: int) -> float
{ be m_float::ldexp(n as m_float, i as c_int) as float }
/*
Function: ln1p
Returns the natural logarithm of `1+n` accurately,
even for very small values of `n`
*/
pure fn ln1p(n: float) -> float
{ be m_float::ln1p(n as m_float) as float }
/*
Function: log10
Returns the logarithm to base 10 of `n`
*/
pure fn log10(n: float) -> float
{ be m_float::log10(n as m_float) as float }
/*
Function: log2
Returns the logarithm to base 2 of `n`
*/
pure fn log2(n: float) -> float
{ be m_float::log2(n as m_float) as float }
/*
Function: modf
Breaks `n` into integral and fractional parts such that both
have the same sign as `n`
The integral part is stored in `iptr`.
Returns:
The fractional part of `n`
*/
#[no(warn_trivial_casts)] // FIXME Implement
pure fn modf(n: float, &iptr: float) -> float { unsafe {
be m_float::modf(n as m_float, ptr::addr_of(iptr) as *m_float) as float
} }
/*
Function: frexp
Breaks `n` into a normalized fraction and an integral power of 2
The inegral part is stored in iptr.
The functions return a number x such that x has a magnitude in the interval
[1/2, 1) or 0, and `n == x*(2 to the power of exp)`.
Returns:
The fractional part of `n`
*/
pure fn frexp(n: float, &exp: c_int) -> float
{ be m_float::frexp(n as m_float, exp) as float }
/*
Function: pow
*/
pure fn pow(v: float, e: float) -> float
{ be m_float::pow(v as m_float, e as m_float) as float }
/*
Function: rint
Returns the integral value nearest to `x` (according to the
prevailing rounding mode) in floating-point format
*/
pure fn rint(x: float) -> float
{ be m_float::rint(x as m_float) as float }
/*
Function: round
Return the integral value nearest to `x` rounding half-way
cases away from zero, regardless of the current rounding direction.
*/
pure fn round(x: float) -> float
{ be m_float::round(x as m_float) as float }
/*
Function: sin
Returns the sine of an angle `x` (measured in rad)
*/
pure fn sin(x: float) -> float
{ be m_float::sin(x as m_float) as float }
/*
Function: sinh
Returns the hyperbolic sine of an angle `x` (measured in rad)
*/
pure fn sinh(x: float) -> float
{ be m_float::sinh(x as m_float) as float }
/*
Function: sqrt
Returns the square root of `x`
*/
pure fn sqrt(x: float) -> float
{ be m_float::sqrt(x as m_float) as float }
/*
Function: tan
Returns the tangent of an angle `x` (measured in rad)
*/
pure fn tan(x: float) -> float
{ be m_float::tan(x as m_float) as float }
/*
Function: tanh
Returns the hyperbolic tangent of an angle `x` (measured in rad)
*/
pure fn tanh(x: float) -> float
{ be m_float::tanh(x as m_float) as float }
/*
Function: trunc
Returns the integral value nearest to but no larger in magnitude than `x`
*/
pure fn trunc(x: float) -> float
{ be m_float::trunc(x as m_float) as float }

View File

@ -1,113 +0,0 @@
/*
Module: math_f32
Floating point operations and constants for `f32`
This exposes the same operations as `math`, just for `f32` even though
they do not show up in the docs right now!
*/
import cmath::f32::*;
export
acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod,
frexp, ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin,
sinh, sqrt, tan, tanh, trunc;
export consts;
/* Module: consts */
mod consts {
/*
Const: pi
Archimedes' constant
*/
const pi: f32 = 3.14159265358979323846264338327950288f32;
/*
Const: frac_pi_2
pi/2.0
*/
const frac_pi_2: f32 = 1.57079632679489661923132169163975144f32;
/*
Const: frac_pi_4
pi/4.0
*/
const frac_pi_4: f32 = 0.785398163397448309615660845819875721f32;
/*
Const: frac_1_pi
1.0/pi
*/
const frac_1_pi: f32 = 0.318309886183790671537767526745028724f32;
/*
Const: frac_2_pi
2.0/pi
*/
const frac_2_pi: f32 = 0.636619772367581343075535053490057448f32;
/*
Const: frac_2_sqrtpi
2.0/sqrt(pi)
*/
const frac_2_sqrtpi: f32 = 1.12837916709551257389615890312154517f32;
/*
Const: sqrt2
sqrt(2.0)
*/
const sqrt2: f32 = 1.41421356237309504880168872420969808f32;
/*
Const: frac_1_sqrt2
1.0/sqrt(2.0)
*/
const frac_1_sqrt2: f32 = 0.707106781186547524400844362104849039f32;
/*
Const: e
Euler's number
*/
const e: f32 = 2.71828182845904523536028747135266250f32;
/*
Const: log2_e
log2(e)
*/
const log2_e: f32 = 1.44269504088896340735992468100189214f32;
/*
Const: log10_e
log10(e)
*/
const log10_e: f32 = 0.434294481903251827651128918916605082f32;
/*
Const: ln_2
ln(2.0)
*/
const ln_2: f32 = 0.693147180559945309417232121458176568f32;
/*
Const: ln_10
ln(10.0)
*/
const ln_10: f32 = 2.30258509299404568401799145468436421f32;
}

View File

@ -1,114 +0,0 @@
/*
Module: math_f64
Floating point operations and constants for `f64`s
This exposes the same operations as `math`, just for `f64` even though
they do not show up in the docs right now!
*/
import cmath::f64::*;
export
acos, asin, atan, atan2, ceil, cos, cosh, exp, abs, floor, fmod,
frexp, ldexp, ln, ln1p, log10, log2, modf, rint, round, pow, sin,
sinh, sqrt, tan, tanh, trunc;
export consts;
/* Module: consts */
mod consts {
/*
Const: pi
Archimedes' constant
*/
const pi: f64 = 3.14159265358979323846264338327950288f64;
/*
Const: frac_pi_2
pi/2.0
*/
const frac_pi_2: f64 = 1.57079632679489661923132169163975144f64;
/*
Const: frac_pi_4
pi/4.0
*/
const frac_pi_4: f64 = 0.785398163397448309615660845819875721f64;
/*
Const: frac_1_pi
1.0/pi
*/
const frac_1_pi: f64 = 0.318309886183790671537767526745028724f64;
/*
Const: frac_2_pi
2.0/pi
*/
const frac_2_pi: f64 = 0.636619772367581343075535053490057448f64;
/*
Const: frac_2_sqrtpi
2.0/sqrt(pi)
*/
const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517f64;
/*
Const: sqrt2
sqrt(2.0)
*/
const sqrt2: f64 = 1.41421356237309504880168872420969808f64;
/*
Const: frac_1_sqrt2
1.0/sqrt(2.0)
*/
const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039f64;
/*
Const: e
Euler's number
*/
const e: f64 = 2.71828182845904523536028747135266250f64;
/*
Const: log2_e
log2(e)
*/
const log2_e: f64 = 1.44269504088896340735992468100189214f64;
/*
Const: log10_e
log10(e)
*/
const log10_e: f64 = 0.434294481903251827651128918916605082f64;
/*
Const: ln_2
ln(2.0)
*/
const ln_2: f64 = 0.693147180559945309417232121458176568f64;
/*
Const: ln_10
ln(10.0)
*/
const ln_10: f64 = 2.30258509299404568401799145468436421f64;
}

View File

@ -8,10 +8,9 @@
#[crate_type = "lib"];
export comm, fs, io, net, run, uv;
export c_vec, ctypes, four, tri, util;
export c_vec, four, tri, util;
export bitv, deque, fun_treemap, list, map, smallintmap, sort, treemap, ufind;
export rope;
export math;
export ebml, dbg, getopts, json, rand, sha1, term, time;
export extfmt, test, tempfile;
// FIXME: generic_os and os_fs shouldn't be exported
@ -32,10 +31,6 @@ mod uv;
// Utility modules
mod c_vec;
mod ctypes;
mod cmath; /* unexported */
mod math_f32;
mod math_f64;
mod four;
mod tri;
mod util;
@ -61,7 +56,6 @@ mod ebml;
mod dbg;
mod getopts;
mod json;
mod math;
mod rand;
mod sha1;
mod tempfile;

View File

@ -251,7 +251,7 @@ fn test_angle() {
alt vec {
(0f, y) when y < 0f { 1.5 * consts::pi }
(0f, y) { 0.5 * consts::pi }
(x, y) { std::math::atan(y / x) }
(x, y) { float::atan(y / x) }
}
}
assert angle((1f, 0f)) == 0f;