Remove `NodeState::{Waiting,Done}`.

`NodeState` has two states, `Success` and `Done`, that are only used
within `ObligationForest` methods. This commit removes them, and renames
the existing `Waiting` state as `Success`.

We are left with three states: `Pending`, `Success`, and `Error`.
`Success` is augmented with a new `WaitingState`, which indicates when
(if ever) it was last waiting on one or more `Pending` nodes. This
notion of "when" requires adding a "process generation" to
`ObligationForest`; it is incremented on each call to
`process_obligtions`.

This commit is a performance win.

- Most of the benefit comes from `mark_as_waiting` (which the commit
  renames as `mark_still_waiting_nodes`). This function used to do two
  things: (a) change all `Waiting` nodes to `Success`, and (b) mark all
  nodes that depend on a pending node as `Waiting`. In practice, many
  nodes went from `Waiting` to `Success` and then immediately back to
  `Waiting`. The use of generations lets us skip step (a).

- A smaller benefit comes from not having to change nodes to the `Done`
  state in `process_cycles`.
This commit is contained in:
Nicholas Nethercote 2019-11-13 08:35:52 +11:00
parent e9469a6aec
commit a8207b1958
1 changed files with 126 additions and 87 deletions

View File

@ -128,21 +128,19 @@ type ObligationTreeIdGenerator =
::std::iter::Map<::std::ops::RangeFrom<usize>, fn(usize) -> ObligationTreeId>;
pub struct ObligationForest<O: ForestObligation> {
/// The list of obligations. In between calls to
/// `process_obligations`, this list only contains nodes in the
/// `Pending` or `Success` state (with a non-zero number of
/// incomplete children). During processing, some of those nodes
/// may be changed to the error state, or we may find that they
/// are completed (That is, `num_incomplete_children` drops to 0).
/// At the end of processing, those nodes will be removed by a
/// call to `compress`.
/// The list of obligations. In between calls to `process_obligations`,
/// this list only contains nodes in the `Pending` or `Success` state.
///
/// `usize` indices are used here and throughout this module, rather than
/// `rustc_index::newtype_index!` indices, because this code is hot enough that the
/// `u32`-to-`usize` conversions that would be required are significant,
/// and space considerations are not important.
/// `rustc_index::newtype_index!` indices, because this code is hot enough
/// that the `u32`-to-`usize` conversions that would be required are
/// significant, and space considerations are not important.
nodes: Vec<Node<O>>,
/// The process generation is 1 on the first call to `process_obligations`,
/// 2 on the second call, etc.
gen: u32,
/// A cache of predicates that have been successfully completed.
done_cache: FxHashSet<O::Predicate>,
@ -211,31 +209,61 @@ impl<O> Node<O> {
/// represents the current state of processing for the obligation (of
/// type `O`) associated with this node.
///
/// Outside of ObligationForest methods, nodes should be either Pending
/// or Waiting.
/// The non-`Error` state transitions are as follows.
/// ```
/// (Pre-creation)
/// |
/// | register_obligation_at() (called by process_obligations() and
/// v from outside the crate)
/// Pending
/// |
/// | process_obligations()
/// v
/// Success(not_waiting())
/// | |
/// | | mark_still_waiting_nodes()
/// | v
/// | Success(still_waiting())
/// | |
/// | | compress()
/// v v
/// (Removed)
/// ```
/// The `Error` state can be introduced in several places, via `error_at()`.
///
/// Outside of `ObligationForest` methods, nodes should be either `Pending` or
/// `Success`.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum NodeState {
/// Obligations for which selection had not yet returned a
/// non-ambiguous result.
/// This obligation has not yet been selected successfully. Cannot have
/// subobligations.
Pending,
/// This obligation was selected successfully, but may or
/// may not have subobligations.
Success,
/// This obligation was selected successfully, but it may be waiting on one
/// or more pending subobligations, as indicated by the `WaitingState`.
Success(WaitingState),
/// This obligation was selected successfully, but it has
/// a pending subobligation.
Waiting,
/// This obligation, along with its subobligations, are complete,
/// and will be removed in the next collection.
Done,
/// This obligation was resolved to an error. Error nodes are
/// removed from the vector by the compression step.
/// This obligation was resolved to an error. It will be removed by the
/// next compression step.
Error,
}
/// Indicates when a `Success` node was last (if ever) waiting on one or more
/// `Pending` nodes. The notion of "when" comes from `ObligationForest::gen`.
/// - 0: "Not waiting". This is a special value, set by `process_obligation`,
/// and usable because generation counting starts at 1.
/// - 1..ObligationForest::gen: "Was waiting" in a previous generation, but
/// waiting no longer. In other words, finished.
/// - ObligationForest::gen: "Still waiting" in this generation.
///
/// Things to note about this encoding:
/// - Every time `ObligationForest::gen` is incremented, all the "still
/// waiting" nodes automatically become "was waiting".
/// - `ObligationForest::is_still_waiting` is very cheap.
///
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd)]
struct WaitingState(u32);
#[derive(Debug)]
pub struct Outcome<O, E> {
/// Obligations that were completely evaluated, including all
@ -272,6 +300,7 @@ impl<O: ForestObligation> ObligationForest<O> {
pub fn new() -> ObligationForest<O> {
ObligationForest {
nodes: vec![],
gen: 0,
done_cache: Default::default(),
active_cache: Default::default(),
node_rewrites: RefCell::new(vec![]),
@ -382,6 +411,18 @@ impl<O: ForestObligation> ObligationForest<O> {
.insert(node.obligation.as_predicate().clone());
}
fn not_waiting() -> WaitingState {
WaitingState(0)
}
fn still_waiting(&self) -> WaitingState {
WaitingState(self.gen)
}
fn is_still_waiting(&self, waiting: WaitingState) -> bool {
waiting.0 == self.gen
}
/// Performs a pass through the obligation list. This must
/// be called in a loop until `outcome.stalled` is false.
///
@ -392,6 +433,8 @@ impl<O: ForestObligation> ObligationForest<O> {
{
debug!("process_obligations(len={})", self.nodes.len());
self.gen += 1;
let mut errors = vec![];
let mut stalled = true;
@ -429,7 +472,7 @@ impl<O: ForestObligation> ObligationForest<O> {
ProcessResult::Changed(children) => {
// We are not (yet) stalled.
stalled = false;
node.state.set(NodeState::Success);
node.state.set(NodeState::Success(Self::not_waiting()));
for child in children {
let st = self.register_obligation_at(
@ -464,7 +507,7 @@ impl<O: ForestObligation> ObligationForest<O> {
};
}
self.mark_as_waiting();
self.mark_still_waiting_nodes();
self.process_cycles(processor);
let completed = self.compress(do_completed);
@ -477,10 +520,8 @@ impl<O: ForestObligation> ObligationForest<O> {
}
}
/// Mark all `NodeState::Success` nodes as `NodeState::Done` and
/// report all cycles between them. This should be called
/// after `mark_as_waiting` marks all nodes with pending
/// subobligations as NodeState::Waiting.
/// Report cycles between all `Success` nodes that aren't still waiting.
/// This must be called after `mark_still_waiting_nodes`.
fn process_cycles<P>(&self, processor: &mut P)
where P: ObligationProcessor<Obligation=O>
{
@ -489,13 +530,15 @@ impl<O: ForestObligation> ObligationForest<O> {
debug!("process_cycles()");
for (index, node) in self.nodes.iter().enumerate() {
// For some benchmarks this state test is extremely
// hot. It's a win to handle the no-op cases immediately to avoid
// the cost of the function call.
if node.state.get() == NodeState::Success {
// For some benchmarks this state test is extremely hot. It's a win
// to handle the no-op cases immediately to avoid the cost of the
// function call.
if let NodeState::Success(waiting) = node.state.get() {
if !self.is_still_waiting(waiting) {
self.find_cycles_from_node(&mut stack, processor, index);
}
}
}
debug!("process_cycles: complete");
@ -506,7 +549,8 @@ impl<O: ForestObligation> ObligationForest<O> {
where P: ObligationProcessor<Obligation=O>
{
let node = &self.nodes[index];
if node.state.get() == NodeState::Success {
if let NodeState::Success(waiting) = node.state.get() {
if !self.is_still_waiting(waiting) {
match stack.iter().rposition(|&n| n == index) {
None => {
stack.push(index);
@ -514,7 +558,6 @@ impl<O: ForestObligation> ObligationForest<O> {
self.find_cycles_from_node(stack, processor, index);
}
stack.pop();
node.state.set(NodeState::Done);
}
Some(rpos) => {
// Cycle detected.
@ -526,6 +569,7 @@ impl<O: ForestObligation> ObligationForest<O> {
}
}
}
}
/// Returns a vector of obligations for `p` and all of its
/// ancestors, putting them into the error state in the process.
@ -562,19 +606,14 @@ impl<O: ForestObligation> ObligationForest<O> {
// This always-inlined function is for the hot call site.
#[inline(always)]
fn inlined_mark_neighbors_as_waiting_from(&self, node: &Node<O>) {
fn inlined_mark_dependents_as_still_waiting(&self, node: &Node<O>) {
for &index in node.dependents.iter() {
let node = &self.nodes[index];
match node.state.get() {
NodeState::Waiting | NodeState::Error => {}
NodeState::Success => {
node.state.set(NodeState::Waiting);
if let NodeState::Success(waiting) = node.state.get() {
if !self.is_still_waiting(waiting) {
node.state.set(NodeState::Success(self.still_waiting()));
// This call site is cold.
self.uninlined_mark_neighbors_as_waiting_from(node);
}
NodeState::Pending | NodeState::Done => {
// This call site is cold.
self.uninlined_mark_neighbors_as_waiting_from(node);
self.uninlined_mark_dependents_as_still_waiting(node);
}
}
}
@ -582,31 +621,26 @@ impl<O: ForestObligation> ObligationForest<O> {
// This never-inlined function is for the cold call site.
#[inline(never)]
fn uninlined_mark_neighbors_as_waiting_from(&self, node: &Node<O>) {
self.inlined_mark_neighbors_as_waiting_from(node)
}
/// Marks all nodes that depend on a pending node as `NodeState::Waiting`.
fn mark_as_waiting(&self) {
for node in &self.nodes {
if node.state.get() == NodeState::Waiting {
node.state.set(NodeState::Success);
}
fn uninlined_mark_dependents_as_still_waiting(&self, node: &Node<O>) {
self.inlined_mark_dependents_as_still_waiting(node)
}
/// Mark all `Success` nodes that depend on a pending node as still
/// waiting. Upon completion, any `Success` nodes that aren't still waiting
/// can be removed by `compress`.
fn mark_still_waiting_nodes(&self) {
for node in &self.nodes {
if node.state.get() == NodeState::Pending {
// This call site is hot.
self.inlined_mark_neighbors_as_waiting_from(node);
self.inlined_mark_dependents_as_still_waiting(node);
}
}
}
/// Compresses the vector, removing all popped nodes. This adjusts the
/// indices and hence invalidates any outstanding indices.
///
/// Beforehand, all nodes must be marked as `Done` and no cycles
/// on these nodes may be present. This is done by e.g., `process_cycles`.
/// indices and hence invalidates any outstanding indices. `process_cycles`
/// must be run beforehand to remove any cycles on not-still-waiting
/// `Success` nodes.
#[inline(never)]
fn compress(&mut self, do_completed: DoCompleted) -> Option<Vec<O>> {
let orig_nodes_len = self.nodes.len();
@ -614,10 +648,10 @@ impl<O: ForestObligation> ObligationForest<O> {
debug_assert!(node_rewrites.is_empty());
node_rewrites.extend(0..orig_nodes_len);
let mut dead_nodes = 0;
let mut removed_done_obligations: Vec<O> = vec![];
let mut removed_success_obligations: Vec<O> = vec![];
// Now move all Done/Error nodes to the end, preserving the order of
// the Pending/Waiting nodes.
// Move removable nodes to the end, preserving the order of the
// remaining nodes.
//
// LOOP INVARIANT:
// self.nodes[0..index - dead_nodes] are the first remaining nodes
@ -626,13 +660,19 @@ impl<O: ForestObligation> ObligationForest<O> {
for index in 0..orig_nodes_len {
let node = &self.nodes[index];
match node.state.get() {
NodeState::Pending | NodeState::Waiting => {
NodeState::Pending => {
if dead_nodes > 0 {
self.nodes.swap(index, index - dead_nodes);
node_rewrites[index] -= dead_nodes;
}
}
NodeState::Done => {
NodeState::Success(waiting) if self.is_still_waiting(waiting) => {
if dead_nodes > 0 {
self.nodes.swap(index, index - dead_nodes);
node_rewrites[index] -= dead_nodes;
}
}
NodeState::Success(_) => {
// This lookup can fail because the contents of
// `self.active_cache` are not guaranteed to match those of
// `self.nodes`. See the comment in `process_obligation`
@ -646,7 +686,7 @@ impl<O: ForestObligation> ObligationForest<O> {
}
if do_completed == DoCompleted::Yes {
// Extract the success stories.
removed_done_obligations.push(node.obligation.clone());
removed_success_obligations.push(node.obligation.clone());
}
node_rewrites[index] = orig_nodes_len;
dead_nodes += 1;
@ -660,7 +700,6 @@ impl<O: ForestObligation> ObligationForest<O> {
node_rewrites[index] = orig_nodes_len;
dead_nodes += 1;
}
NodeState::Success => unreachable!()
}
}
@ -674,7 +713,7 @@ impl<O: ForestObligation> ObligationForest<O> {
self.node_rewrites.replace(node_rewrites);
if do_completed == DoCompleted::Yes {
Some(removed_done_obligations)
Some(removed_success_obligations)
} else {
None
}