From bed70a42ecf0747f924c813b3b375d5fd364ffc3 Mon Sep 17 00:00:00 2001 From: Brendan Zabarauskas Date: Fri, 18 Apr 2014 13:49:37 +1000 Subject: [PATCH] Have floating point functions take their parameters by value. Make all of the methods in `std::num::Float` take `self` and their other parameters by value. Some of the `Float` methods took their parameters by value, and others took them by reference. This standardises them to one convention. The `Float` trait is intended for the built in IEEE 754 numbers only so we don't have to worry about the trait serving types of larger sizes. [breaking-change] --- src/doc/guide-tasks.md | 4 +- src/libnum/complex.rs | 4 +- src/libnum/rational.rs | 12 ++-- src/librand/distributions/gamma.rs | 2 +- src/libstd/num/f32.rs | 108 ++++++++++++++--------------- src/libstd/num/f64.rs | 108 ++++++++++++++--------------- src/libstd/num/mod.rs | 90 ++++++++++++------------ src/libstd/num/strconv.rs | 2 +- src/libtest/stats.rs | 4 +- 9 files changed, 167 insertions(+), 167 deletions(-) diff --git a/src/doc/guide-tasks.md b/src/doc/guide-tasks.md index 5dd58ccb61d..f9483fb4d6b 100644 --- a/src/doc/guide-tasks.md +++ b/src/doc/guide-tasks.md @@ -306,7 +306,7 @@ be distributed on the available cores. fn partial_sum(start: uint) -> f64 { let mut local_sum = 0f64; for num in range(start*100000, (start+1)*100000) { - local_sum += (num as f64 + 1.0).powf(&-2.0); + local_sum += (num as f64 + 1.0).powf(-2.0); } local_sum } @@ -343,7 +343,7 @@ extern crate sync; use sync::Arc; fn pnorm(nums: &[f64], p: uint) -> f64 { - nums.iter().fold(0.0, |a,b| a+(*b).powf(&(p as f64)) ).powf(&(1.0 / (p as f64))) + nums.iter().fold(0.0, |a, b| a + b.powf(p as f64)).powf(1.0 / (p as f64)) } fn main() { diff --git a/src/libnum/complex.rs b/src/libnum/complex.rs index 069dd2164f5..e0fdc8a363d 100644 --- a/src/libnum/complex.rs +++ b/src/libnum/complex.rs @@ -82,7 +82,7 @@ impl Cmplx { /// Calculate |self| #[inline] pub fn norm(&self) -> T { - self.re.hypot(&self.im) + self.re.hypot(self.im) } } @@ -90,7 +90,7 @@ impl Cmplx { /// Calculate the principal Arg of self. #[inline] pub fn arg(&self) -> T { - self.im.atan2(&self.re) + self.im.atan2(self.re) } /// Convert to polar form (r, theta), such that `self = r * exp(i /// * theta)` diff --git a/src/libnum/rational.rs b/src/libnum/rational.rs index 8f2efc8626b..cff1fb30b56 100644 --- a/src/libnum/rational.rs +++ b/src/libnum/rational.rs @@ -631,19 +631,19 @@ mod test { // f32 test(3.14159265359f32, ("13176795", "4194304")); - test(2f32.powf(&100.), ("1267650600228229401496703205376", "1")); - test(-2f32.powf(&100.), ("-1267650600228229401496703205376", "1")); - test(1.0 / 2f32.powf(&100.), ("1", "1267650600228229401496703205376")); + test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); + test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1")); + test(1.0 / 2f32.powf(100.), ("1", "1267650600228229401496703205376")); test(684729.48391f32, ("1369459", "2")); test(-8573.5918555f32, ("-4389679", "512")); // f64 test(3.14159265359f64, ("3537118876014453", "1125899906842624")); - test(2f64.powf(&100.), ("1267650600228229401496703205376", "1")); - test(-2f64.powf(&100.), ("-1267650600228229401496703205376", "1")); + test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); + test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1")); test(684729.48391f64, ("367611342500051", "536870912")); test(-8573.5918555, ("-4713381968463931", "549755813888")); - test(1.0 / 2f64.powf(&100.), ("1", "1267650600228229401496703205376")); + test(1.0 / 2f64.powf(100.), ("1", "1267650600228229401496703205376")); } #[test] diff --git a/src/librand/distributions/gamma.rs b/src/librand/distributions/gamma.rs index dd249a1fbca..1bb2c35bce2 100644 --- a/src/librand/distributions/gamma.rs +++ b/src/librand/distributions/gamma.rs @@ -147,7 +147,7 @@ impl IndependentSample for GammaSmallShape { fn ind_sample(&self, rng: &mut R) -> f64 { let Open01(u) = rng.gen::>(); - self.large_shape.ind_sample(rng) * u.powf(&self.inv_shape) + self.large_shape.ind_sample(rng) * u.powf(self.inv_shape) } } impl IndependentSample for GammaLargeShape { diff --git a/src/libstd/num/f32.rs b/src/libstd/num/f32.rs index 893897e661a..2436ed1e95e 100644 --- a/src/libstd/num/f32.rs +++ b/src/libstd/num/f32.rs @@ -250,7 +250,7 @@ impl Bounded for f32 { impl Primitive for f32 {} impl Float for f32 { - fn powi(&self, n: i32) -> f32 { unsafe{intrinsics::powif32(*self, n)} } + fn powi(self, n: i32) -> f32 { unsafe{intrinsics::powif32(self, n)} } #[inline] fn max(self, other: f32) -> f32 { @@ -276,33 +276,33 @@ impl Float for f32 { /// Returns `true` if the number is NaN #[inline] - fn is_nan(&self) -> bool { *self != *self } + fn is_nan(self) -> bool { self != self } /// Returns `true` if the number is infinite #[inline] - fn is_infinite(&self) -> bool { - *self == Float::infinity() || *self == Float::neg_infinity() + fn is_infinite(self) -> bool { + self == Float::infinity() || self == Float::neg_infinity() } /// Returns `true` if the number is neither infinite or NaN #[inline] - fn is_finite(&self) -> bool { + fn is_finite(self) -> bool { !(self.is_nan() || self.is_infinite()) } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN #[inline] - fn is_normal(&self) -> bool { + fn is_normal(self) -> bool { self.classify() == FPNormal } /// Returns the floating point category of the number. If only one property is going to /// be tested, it is generally faster to use the specific predicate instead. - fn classify(&self) -> FPCategory { + fn classify(self) -> FPCategory { static EXP_MASK: u32 = 0x7f800000; static MAN_MASK: u32 = 0x007fffff; - let bits: u32 = unsafe {::cast::transmute(*self)}; + let bits: u32 = unsafe {::cast::transmute(self)}; match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => FPZero, (_, 0) => FPSubnormal, @@ -342,10 +342,10 @@ impl Float for f32 { /// - `self = x * pow(2, exp)` /// - `0.5 <= abs(x) < 1.0` #[inline] - fn frexp(&self) -> (f32, int) { + fn frexp(self) -> (f32, int) { unsafe { let mut exp = 0; - let x = cmath::frexpf(*self, &mut exp); + let x = cmath::frexpf(self, &mut exp); (x, exp as int) } } @@ -353,27 +353,27 @@ impl Float for f32 { /// Returns the exponential of the number, minus `1`, in a way that is accurate /// even if the number is close to zero #[inline] - fn exp_m1(&self) -> f32 { unsafe{cmath::expm1f(*self)} } + fn exp_m1(self) -> f32 { unsafe{cmath::expm1f(self)} } /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately /// than if the operations were performed separately #[inline] - fn ln_1p(&self) -> f32 { unsafe{cmath::log1pf(*self)} } + fn ln_1p(self) -> f32 { unsafe{cmath::log1pf(self)} } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This /// produces a more accurate result with better performance than a separate multiplication /// operation followed by an add. #[inline] - fn mul_add(&self, a: f32, b: f32) -> f32 { unsafe{intrinsics::fmaf32(*self, a, b)} } + fn mul_add(self, a: f32, b: f32) -> f32 { unsafe{intrinsics::fmaf32(self, a, b)} } /// Returns the next representable floating-point value in the direction of `other` #[inline] - fn next_after(&self, other: f32) -> f32 { unsafe{cmath::nextafterf(*self, other)} } + fn next_after(self, other: f32) -> f32 { unsafe{cmath::nextafterf(self, other)} } /// Returns the mantissa, exponent and sign as integers. - fn integer_decode(&self) -> (u64, i16, i8) { + fn integer_decode(self) -> (u64, i16, i8) { let bits: u32 = unsafe { - ::cast::transmute(*self) + ::cast::transmute(self) }; let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; @@ -389,19 +389,19 @@ impl Float for f32 { /// Round half-way cases toward `NEG_INFINITY` #[inline] - fn floor(&self) -> f32 { unsafe{intrinsics::floorf32(*self)} } + fn floor(self) -> f32 { unsafe{intrinsics::floorf32(self)} } /// Round half-way cases toward `INFINITY` #[inline] - fn ceil(&self) -> f32 { unsafe{intrinsics::ceilf32(*self)} } + fn ceil(self) -> f32 { unsafe{intrinsics::ceilf32(self)} } /// Round half-way cases away from `0.0` #[inline] - fn round(&self) -> f32 { unsafe{intrinsics::roundf32(*self)} } + fn round(self) -> f32 { unsafe{intrinsics::roundf32(self)} } /// The integer part of the number (rounds towards `0.0`) #[inline] - fn trunc(&self) -> f32 { unsafe{intrinsics::truncf32(*self)} } + fn trunc(self) -> f32 { unsafe{intrinsics::truncf32(self)} } /// The fractional part of the number, satisfying: /// @@ -410,7 +410,7 @@ impl Float for f32 { /// assert!(x == x.trunc() + x.fract()) /// ``` #[inline] - fn fract(&self) -> f32 { *self - self.trunc() } + fn fract(self) -> f32 { self - self.trunc() } /// Archimedes' constant #[inline] @@ -482,82 +482,82 @@ impl Float for f32 { /// The reciprocal (multiplicative inverse) of the number #[inline] - fn recip(&self) -> f32 { 1.0 / *self } + fn recip(self) -> f32 { 1.0 / self } #[inline] - fn powf(&self, n: &f32) -> f32 { unsafe{intrinsics::powf32(*self, *n)} } + fn powf(self, n: f32) -> f32 { unsafe{intrinsics::powf32(self, n)} } #[inline] - fn sqrt(&self) -> f32 { unsafe{intrinsics::sqrtf32(*self)} } + fn sqrt(self) -> f32 { unsafe{intrinsics::sqrtf32(self)} } #[inline] - fn rsqrt(&self) -> f32 { self.sqrt().recip() } + fn rsqrt(self) -> f32 { self.sqrt().recip() } #[inline] - fn cbrt(&self) -> f32 { unsafe{cmath::cbrtf(*self)} } + fn cbrt(self) -> f32 { unsafe{cmath::cbrtf(self)} } #[inline] - fn hypot(&self, other: &f32) -> f32 { unsafe{cmath::hypotf(*self, *other)} } + fn hypot(self, other: f32) -> f32 { unsafe{cmath::hypotf(self, other)} } #[inline] - fn sin(&self) -> f32 { unsafe{intrinsics::sinf32(*self)} } + fn sin(self) -> f32 { unsafe{intrinsics::sinf32(self)} } #[inline] - fn cos(&self) -> f32 { unsafe{intrinsics::cosf32(*self)} } + fn cos(self) -> f32 { unsafe{intrinsics::cosf32(self)} } #[inline] - fn tan(&self) -> f32 { unsafe{cmath::tanf(*self)} } + fn tan(self) -> f32 { unsafe{cmath::tanf(self)} } #[inline] - fn asin(&self) -> f32 { unsafe{cmath::asinf(*self)} } + fn asin(self) -> f32 { unsafe{cmath::asinf(self)} } #[inline] - fn acos(&self) -> f32 { unsafe{cmath::acosf(*self)} } + fn acos(self) -> f32 { unsafe{cmath::acosf(self)} } #[inline] - fn atan(&self) -> f32 { unsafe{cmath::atanf(*self)} } + fn atan(self) -> f32 { unsafe{cmath::atanf(self)} } #[inline] - fn atan2(&self, other: &f32) -> f32 { unsafe{cmath::atan2f(*self, *other)} } + fn atan2(self, other: f32) -> f32 { unsafe{cmath::atan2f(self, other)} } /// Simultaneously computes the sine and cosine of the number #[inline] - fn sin_cos(&self) -> (f32, f32) { + fn sin_cos(self) -> (f32, f32) { (self.sin(), self.cos()) } /// Returns the exponential of the number #[inline] - fn exp(&self) -> f32 { unsafe{intrinsics::expf32(*self)} } + fn exp(self) -> f32 { unsafe{intrinsics::expf32(self)} } /// Returns 2 raised to the power of the number #[inline] - fn exp2(&self) -> f32 { unsafe{intrinsics::exp2f32(*self)} } + fn exp2(self) -> f32 { unsafe{intrinsics::exp2f32(self)} } /// Returns the natural logarithm of the number #[inline] - fn ln(&self) -> f32 { unsafe{intrinsics::logf32(*self)} } + fn ln(self) -> f32 { unsafe{intrinsics::logf32(self)} } /// Returns the logarithm of the number with respect to an arbitrary base #[inline] - fn log(&self, base: &f32) -> f32 { self.ln() / base.ln() } + fn log(self, base: f32) -> f32 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number #[inline] - fn log2(&self) -> f32 { unsafe{intrinsics::log2f32(*self)} } + fn log2(self) -> f32 { unsafe{intrinsics::log2f32(self)} } /// Returns the base 10 logarithm of the number #[inline] - fn log10(&self) -> f32 { unsafe{intrinsics::log10f32(*self)} } + fn log10(self) -> f32 { unsafe{intrinsics::log10f32(self)} } #[inline] - fn sinh(&self) -> f32 { unsafe{cmath::sinhf(*self)} } + fn sinh(self) -> f32 { unsafe{cmath::sinhf(self)} } #[inline] - fn cosh(&self) -> f32 { unsafe{cmath::coshf(*self)} } + fn cosh(self) -> f32 { unsafe{cmath::coshf(self)} } #[inline] - fn tanh(&self) -> f32 { unsafe{cmath::tanhf(*self)} } + fn tanh(self) -> f32 { unsafe{cmath::tanhf(self)} } /// Inverse hyperbolic sine /// @@ -567,8 +567,8 @@ impl Float for f32 { /// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY` /// - `NAN` if `self` is `NAN` #[inline] - fn asinh(&self) -> f32 { - match *self { + fn asinh(self) -> f32 { + match self { NEG_INFINITY => NEG_INFINITY, x => (x + ((x * x) + 1.0).sqrt()).ln(), } @@ -582,8 +582,8 @@ impl Float for f32 { /// - `INFINITY` if `self` is `INFINITY` /// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`) #[inline] - fn acosh(&self) -> f32 { - match *self { + fn acosh(self) -> f32 { + match self { x if x < 1.0 => Float::nan(), x => (x + ((x * x) - 1.0).sqrt()).ln(), } @@ -600,19 +600,19 @@ impl Float for f32 { /// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0` /// (including `INFINITY` and `NEG_INFINITY`) #[inline] - fn atanh(&self) -> f32 { - 0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p() + fn atanh(self) -> f32 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } /// Converts to degrees, assuming the number is in radians #[inline] - fn to_degrees(&self) -> f32 { *self * (180.0f32 / Float::pi()) } + fn to_degrees(self) -> f32 { self * (180.0f32 / Float::pi()) } /// Converts to radians, assuming the number is in degrees #[inline] - fn to_radians(&self) -> f32 { + fn to_radians(self) -> f32 { let value: f32 = Float::pi(); - *self * (value / 180.0f32) + self * (value / 180.0f32) } } @@ -1162,7 +1162,7 @@ mod tests { fn test_integer_decode() { assert_eq!(3.14159265359f32.integer_decode(), (13176795u64, -22i16, 1i8)); assert_eq!((-8573.5918555f32).integer_decode(), (8779358u64, -10i16, -1i8)); - assert_eq!(2f32.powf(&100.0).integer_decode(), (8388608u64, 77i16, 1i8)); + assert_eq!(2f32.powf(100.0).integer_decode(), (8388608u64, 77i16, 1i8)); assert_eq!(0f32.integer_decode(), (0u64, -150i16, 1i8)); assert_eq!((-0f32).integer_decode(), (0u64, -150i16, -1i8)); assert_eq!(INFINITY.integer_decode(), (8388608u64, 105i16, 1i8)); diff --git a/src/libstd/num/f64.rs b/src/libstd/num/f64.rs index cf6fadd38aa..3fb5d793db0 100644 --- a/src/libstd/num/f64.rs +++ b/src/libstd/num/f64.rs @@ -282,33 +282,33 @@ impl Float for f64 { /// Returns `true` if the number is NaN #[inline] - fn is_nan(&self) -> bool { *self != *self } + fn is_nan(self) -> bool { self != self } /// Returns `true` if the number is infinite #[inline] - fn is_infinite(&self) -> bool { - *self == Float::infinity() || *self == Float::neg_infinity() + fn is_infinite(self) -> bool { + self == Float::infinity() || self == Float::neg_infinity() } /// Returns `true` if the number is neither infinite or NaN #[inline] - fn is_finite(&self) -> bool { + fn is_finite(self) -> bool { !(self.is_nan() || self.is_infinite()) } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN #[inline] - fn is_normal(&self) -> bool { + fn is_normal(self) -> bool { self.classify() == FPNormal } /// Returns the floating point category of the number. If only one property is going to /// be tested, it is generally faster to use the specific predicate instead. - fn classify(&self) -> FPCategory { + fn classify(self) -> FPCategory { static EXP_MASK: u64 = 0x7ff0000000000000; static MAN_MASK: u64 = 0x000fffffffffffff; - let bits: u64 = unsafe {::cast::transmute(*self)}; + let bits: u64 = unsafe {::cast::transmute(self)}; match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => FPZero, (_, 0) => FPSubnormal, @@ -348,10 +348,10 @@ impl Float for f64 { /// - `self = x * pow(2, exp)` /// - `0.5 <= abs(x) < 1.0` #[inline] - fn frexp(&self) -> (f64, int) { + fn frexp(self) -> (f64, int) { unsafe { let mut exp = 0; - let x = cmath::frexp(*self, &mut exp); + let x = cmath::frexp(self, &mut exp); (x, exp as int) } } @@ -359,27 +359,27 @@ impl Float for f64 { /// Returns the exponential of the number, minus `1`, in a way that is accurate /// even if the number is close to zero #[inline] - fn exp_m1(&self) -> f64 { unsafe{cmath::expm1(*self)} } + fn exp_m1(self) -> f64 { unsafe{cmath::expm1(self)} } /// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately /// than if the operations were performed separately #[inline] - fn ln_1p(&self) -> f64 { unsafe{cmath::log1p(*self)} } + fn ln_1p(self) -> f64 { unsafe{cmath::log1p(self)} } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This /// produces a more accurate result with better performance than a separate multiplication /// operation followed by an add. #[inline] - fn mul_add(&self, a: f64, b: f64) -> f64 { unsafe{intrinsics::fmaf64(*self, a, b)} } + fn mul_add(self, a: f64, b: f64) -> f64 { unsafe{intrinsics::fmaf64(self, a, b)} } /// Returns the next representable floating-point value in the direction of `other` #[inline] - fn next_after(&self, other: f64) -> f64 { unsafe{cmath::nextafter(*self, other)} } + fn next_after(self, other: f64) -> f64 { unsafe{cmath::nextafter(self, other)} } /// Returns the mantissa, exponent and sign as integers. - fn integer_decode(&self) -> (u64, i16, i8) { + fn integer_decode(self) -> (u64, i16, i8) { let bits: u64 = unsafe { - ::cast::transmute(*self) + ::cast::transmute(self) }; let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; @@ -395,19 +395,19 @@ impl Float for f64 { /// Round half-way cases toward `NEG_INFINITY` #[inline] - fn floor(&self) -> f64 { unsafe{intrinsics::floorf64(*self)} } + fn floor(self) -> f64 { unsafe{intrinsics::floorf64(self)} } /// Round half-way cases toward `INFINITY` #[inline] - fn ceil(&self) -> f64 { unsafe{intrinsics::ceilf64(*self)} } + fn ceil(self) -> f64 { unsafe{intrinsics::ceilf64(self)} } /// Round half-way cases away from `0.0` #[inline] - fn round(&self) -> f64 { unsafe{intrinsics::roundf64(*self)} } + fn round(self) -> f64 { unsafe{intrinsics::roundf64(self)} } /// The integer part of the number (rounds towards `0.0`) #[inline] - fn trunc(&self) -> f64 { unsafe{intrinsics::truncf64(*self)} } + fn trunc(self) -> f64 { unsafe{intrinsics::truncf64(self)} } /// The fractional part of the number, satisfying: /// @@ -416,7 +416,7 @@ impl Float for f64 { /// assert!(x == x.trunc() + x.fract()) /// ``` #[inline] - fn fract(&self) -> f64 { *self - self.trunc() } + fn fract(self) -> f64 { self - self.trunc() } /// Archimedes' constant #[inline] @@ -488,85 +488,85 @@ impl Float for f64 { /// The reciprocal (multiplicative inverse) of the number #[inline] - fn recip(&self) -> f64 { 1.0 / *self } + fn recip(self) -> f64 { 1.0 / self } #[inline] - fn powf(&self, n: &f64) -> f64 { unsafe{intrinsics::powf64(*self, *n)} } + fn powf(self, n: f64) -> f64 { unsafe{intrinsics::powf64(self, n)} } #[inline] - fn powi(&self, n: i32) -> f64 { unsafe{intrinsics::powif64(*self, n)} } + fn powi(self, n: i32) -> f64 { unsafe{intrinsics::powif64(self, n)} } #[inline] - fn sqrt(&self) -> f64 { unsafe{intrinsics::sqrtf64(*self)} } + fn sqrt(self) -> f64 { unsafe{intrinsics::sqrtf64(self)} } #[inline] - fn rsqrt(&self) -> f64 { self.sqrt().recip() } + fn rsqrt(self) -> f64 { self.sqrt().recip() } #[inline] - fn cbrt(&self) -> f64 { unsafe{cmath::cbrt(*self)} } + fn cbrt(self) -> f64 { unsafe{cmath::cbrt(self)} } #[inline] - fn hypot(&self, other: &f64) -> f64 { unsafe{cmath::hypot(*self, *other)} } + fn hypot(self, other: f64) -> f64 { unsafe{cmath::hypot(self, other)} } #[inline] - fn sin(&self) -> f64 { unsafe{intrinsics::sinf64(*self)} } + fn sin(self) -> f64 { unsafe{intrinsics::sinf64(self)} } #[inline] - fn cos(&self) -> f64 { unsafe{intrinsics::cosf64(*self)} } + fn cos(self) -> f64 { unsafe{intrinsics::cosf64(self)} } #[inline] - fn tan(&self) -> f64 { unsafe{cmath::tan(*self)} } + fn tan(self) -> f64 { unsafe{cmath::tan(self)} } #[inline] - fn asin(&self) -> f64 { unsafe{cmath::asin(*self)} } + fn asin(self) -> f64 { unsafe{cmath::asin(self)} } #[inline] - fn acos(&self) -> f64 { unsafe{cmath::acos(*self)} } + fn acos(self) -> f64 { unsafe{cmath::acos(self)} } #[inline] - fn atan(&self) -> f64 { unsafe{cmath::atan(*self)} } + fn atan(self) -> f64 { unsafe{cmath::atan(self)} } #[inline] - fn atan2(&self, other: &f64) -> f64 { unsafe{cmath::atan2(*self, *other)} } + fn atan2(self, other: f64) -> f64 { unsafe{cmath::atan2(self, other)} } /// Simultaneously computes the sine and cosine of the number #[inline] - fn sin_cos(&self) -> (f64, f64) { + fn sin_cos(self) -> (f64, f64) { (self.sin(), self.cos()) } /// Returns the exponential of the number #[inline] - fn exp(&self) -> f64 { unsafe{intrinsics::expf64(*self)} } + fn exp(self) -> f64 { unsafe{intrinsics::expf64(self)} } /// Returns 2 raised to the power of the number #[inline] - fn exp2(&self) -> f64 { unsafe{intrinsics::exp2f64(*self)} } + fn exp2(self) -> f64 { unsafe{intrinsics::exp2f64(self)} } /// Returns the natural logarithm of the number #[inline] - fn ln(&self) -> f64 { unsafe{intrinsics::logf64(*self)} } + fn ln(self) -> f64 { unsafe{intrinsics::logf64(self)} } /// Returns the logarithm of the number with respect to an arbitrary base #[inline] - fn log(&self, base: &f64) -> f64 { self.ln() / base.ln() } + fn log(self, base: f64) -> f64 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number #[inline] - fn log2(&self) -> f64 { unsafe{intrinsics::log2f64(*self)} } + fn log2(self) -> f64 { unsafe{intrinsics::log2f64(self)} } /// Returns the base 10 logarithm of the number #[inline] - fn log10(&self) -> f64 { unsafe{intrinsics::log10f64(*self)} } + fn log10(self) -> f64 { unsafe{intrinsics::log10f64(self)} } #[inline] - fn sinh(&self) -> f64 { unsafe{cmath::sinh(*self)} } + fn sinh(self) -> f64 { unsafe{cmath::sinh(self)} } #[inline] - fn cosh(&self) -> f64 { unsafe{cmath::cosh(*self)} } + fn cosh(self) -> f64 { unsafe{cmath::cosh(self)} } #[inline] - fn tanh(&self) -> f64 { unsafe{cmath::tanh(*self)} } + fn tanh(self) -> f64 { unsafe{cmath::tanh(self)} } /// Inverse hyperbolic sine /// @@ -576,8 +576,8 @@ impl Float for f64 { /// - `self` if `self` is `0.0`, `-0.0`, `INFINITY`, or `NEG_INFINITY` /// - `NAN` if `self` is `NAN` #[inline] - fn asinh(&self) -> f64 { - match *self { + fn asinh(self) -> f64 { + match self { NEG_INFINITY => NEG_INFINITY, x => (x + ((x * x) + 1.0).sqrt()).ln(), } @@ -591,8 +591,8 @@ impl Float for f64 { /// - `INFINITY` if `self` is `INFINITY` /// - `NAN` if `self` is `NAN` or `self < 1.0` (including `NEG_INFINITY`) #[inline] - fn acosh(&self) -> f64 { - match *self { + fn acosh(self) -> f64 { + match self { x if x < 1.0 => Float::nan(), x => (x + ((x * x) - 1.0).sqrt()).ln(), } @@ -609,19 +609,19 @@ impl Float for f64 { /// - `NAN` if the `self` is `NAN` or outside the domain of `-1.0 <= self <= 1.0` /// (including `INFINITY` and `NEG_INFINITY`) #[inline] - fn atanh(&self) -> f64 { - 0.5 * ((2.0 * *self) / (1.0 - *self)).ln_1p() + fn atanh(self) -> f64 { + 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } /// Converts to degrees, assuming the number is in radians #[inline] - fn to_degrees(&self) -> f64 { *self * (180.0f64 / Float::pi()) } + fn to_degrees(self) -> f64 { self * (180.0f64 / Float::pi()) } /// Converts to radians, assuming the number is in degrees #[inline] - fn to_radians(&self) -> f64 { + fn to_radians(self) -> f64 { let value: f64 = Float::pi(); - *self * (value / 180.0) + self * (value / 180.0) } } @@ -1165,7 +1165,7 @@ mod tests { fn test_integer_decode() { assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906u64, -51i16, 1i8)); assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931u64, -39i16, -1i8)); - assert_eq!(2f64.powf(&100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8)); + assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496u64, 48i16, 1i8)); assert_eq!(0f64.integer_decode(), (0u64, -1075i16, 1i8)); assert_eq!((-0f64).integer_decode(), (0u64, -1075i16, -1i8)); assert_eq!(INFINITY.integer_decode(), (4503599627370496u64, 972i16, 1i8)); diff --git a/src/libstd/num/mod.rs b/src/libstd/num/mod.rs index b3e15a97086..d825b1c2f01 100644 --- a/src/libstd/num/mod.rs +++ b/src/libstd/num/mod.rs @@ -347,19 +347,19 @@ pub trait Float: Signed + Primitive { fn neg_zero() -> Self; /// Returns true if this value is NaN and false otherwise. - fn is_nan(&self) -> bool; + fn is_nan(self) -> bool; /// Returns true if this value is positive infinity or negative infinity and false otherwise. - fn is_infinite(&self) -> bool; + fn is_infinite(self) -> bool; /// Returns true if this number is neither infinite nor NaN. - fn is_finite(&self) -> bool; + fn is_finite(self) -> bool; /// Returns true if this number is neither zero, infinite, denormal, or NaN. - fn is_normal(&self) -> bool; + fn is_normal(self) -> bool; /// Returns the category that this number falls into. - fn classify(&self) -> FPCategory; + fn classify(self) -> FPCategory; /// Returns the number of binary digits of mantissa that this type supports. fn mantissa_digits(unused_self: Option) -> uint; @@ -391,42 +391,42 @@ pub trait Float: Signed + Primitive { /// * `self = x * pow(2, exp)` /// /// * `0.5 <= abs(x) < 1.0` - fn frexp(&self) -> (Self, int); + fn frexp(self) -> (Self, int); /// Returns the exponential of the number, minus 1, in a way that is accurate even if the /// number is close to zero. - fn exp_m1(&self) -> Self; + fn exp_m1(self) -> Self; /// Returns the natural logarithm of the number plus 1 (`ln(1+n)`) more accurately than if the /// operations were performed separately. - fn ln_1p(&self) -> Self; + fn ln_1p(self) -> Self; /// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This produces a /// more accurate result with better performance than a separate multiplication operation /// followed by an add. - fn mul_add(&self, a: Self, b: Self) -> Self; + fn mul_add(self, a: Self, b: Self) -> Self; /// Returns the next representable floating-point value in the direction of `other`. - fn next_after(&self, other: Self) -> Self; + fn next_after(self, other: Self) -> Self; /// Returns the mantissa, exponent and sign as integers, respectively. - fn integer_decode(&self) -> (u64, i16, i8); + fn integer_decode(self) -> (u64, i16, i8); /// Return the largest integer less than or equal to a number. - fn floor(&self) -> Self; + fn floor(self) -> Self; /// Return the smallest integer greater than or equal to a number. - fn ceil(&self) -> Self; + fn ceil(self) -> Self; /// Return the nearest integer to a number. Round half-way cases away from /// `0.0`. - fn round(&self) -> Self; + fn round(self) -> Self; /// Return the integer part of a number. - fn trunc(&self) -> Self; + fn trunc(self) -> Self; /// Return the fractional part of a number. - fn fract(&self) -> Self; + fn fract(self) -> Self; /// Archimedes' constant. fn pi() -> Self; @@ -480,81 +480,81 @@ pub trait Float: Signed + Primitive { fn ln_10() -> Self; /// Take the reciprocal (inverse) of a number, `1/x`. - fn recip(&self) -> Self; + fn recip(self) -> Self; /// Raise a number to a power. - fn powf(&self, n: &Self) -> Self; + fn powf(self, n: Self) -> Self; /// Raise a number to an integer power. /// /// Using this function is generally faster than using `powf` - fn powi(&self, n: i32) -> Self; + fn powi(self, n: i32) -> Self; /// Take the square root of a number. - fn sqrt(&self) -> Self; + fn sqrt(self) -> Self; /// Take the reciprocal (inverse) square root of a number, `1/sqrt(x)`. - fn rsqrt(&self) -> Self; + fn rsqrt(self) -> Self; /// Take the cubic root of a number. - fn cbrt(&self) -> Self; + fn cbrt(self) -> Self; /// Calculate the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. - fn hypot(&self, other: &Self) -> Self; + fn hypot(self, other: Self) -> Self; /// Computes the sine of a number (in radians). - fn sin(&self) -> Self; + fn sin(self) -> Self; /// Computes the cosine of a number (in radians). - fn cos(&self) -> Self; + fn cos(self) -> Self; /// Computes the tangent of a number (in radians). - fn tan(&self) -> Self; + fn tan(self) -> Self; /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. - fn asin(&self) -> Self; + fn asin(self) -> Self; /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. - fn acos(&self) -> Self; + fn acos(self) -> Self; /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; - fn atan(&self) -> Self; + fn atan(self) -> Self; /// Computes the four quadrant arctangent of a number, `y`, and another /// number `x`. Return value is in radians in the range [-pi, pi]. - fn atan2(&self, other: &Self) -> Self; + fn atan2(self, other: Self) -> Self; /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. - fn sin_cos(&self) -> (Self, Self); + fn sin_cos(self) -> (Self, Self); /// Returns `e^(self)`, (the exponential function). - fn exp(&self) -> Self; + fn exp(self) -> Self; /// Returns 2 raised to the power of the number, `2^(self)`. - fn exp2(&self) -> Self; + fn exp2(self) -> Self; /// Returns the natural logarithm of the number. - fn ln(&self) -> Self; + fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. - fn log(&self, base: &Self) -> Self; + fn log(self, base: Self) -> Self; /// Returns the base 2 logarithm of the number. - fn log2(&self) -> Self; + fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. - fn log10(&self) -> Self; + fn log10(self) -> Self; /// Hyperbolic sine function. - fn sinh(&self) -> Self; + fn sinh(self) -> Self; /// Hyperbolic cosine function. - fn cosh(&self) -> Self; + fn cosh(self) -> Self; /// Hyperbolic tangent function. - fn tanh(&self) -> Self; + fn tanh(self) -> Self; /// Inverse hyperbolic sine function. - fn asinh(&self) -> Self; + fn asinh(self) -> Self; /// Inverse hyperbolic cosine function. - fn acosh(&self) -> Self; + fn acosh(self) -> Self; /// Inverse hyperbolic tangent function. - fn atanh(&self) -> Self; + fn atanh(self) -> Self; /// Convert radians to degrees. - fn to_degrees(&self) -> Self; + fn to_degrees(self) -> Self; /// Convert degrees to radians. - fn to_radians(&self) -> Self; + fn to_radians(self) -> Self; } /// A generic trait for converting a value to a number. diff --git a/src/libstd/num/strconv.rs b/src/libstd/num/strconv.rs index 73dfbdd088e..bb2fd2a4e25 100644 --- a/src/libstd/num/strconv.rs +++ b/src/libstd/num/strconv.rs @@ -310,7 +310,7 @@ pub fn float_to_str_bytes_common unreachable!() }; - (num / exp_base.powf(&exp), cast::(exp).unwrap()) + (num / exp_base.powf(exp), cast::(exp).unwrap()) } } }; diff --git a/src/libtest/stats.rs b/src/libtest/stats.rs index 1341b8d230f..d55fcc66026 100644 --- a/src/libtest/stats.rs +++ b/src/libtest/stats.rs @@ -352,8 +352,8 @@ pub fn write_boxplot(w: &mut io::Writer, s: &Summary, let (q1,q2,q3) = s.quartiles; // the .abs() handles the case where numbers are negative - let lomag = (10.0_f64).powf(&(s.min.abs().log10().floor())); - let himag = (10.0_f64).powf(&(s.max.abs().log10().floor())); + let lomag = 10.0_f64.powf(s.min.abs().log10().floor()); + let himag = 10.0_f64.powf(s.max.abs().log10().floor()); // need to consider when the limit is zero let lo = if lomag == 0.0 {