Auto merge of #76906 - Nicholas-Baron:shorten_typeck_check, r=oli-obk

Split rustc_typeck::check into separate files

Contributing to #60302.
This commit is contained in:
bors 2020-09-22 08:11:07 +00:00
commit c113030f6b
7 changed files with 5090 additions and 4972 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,78 @@
use rustc_span::source_map::DUMMY_SP;
use rustc_span::{self, Span};
use std::{cmp, ops};
/// Tracks whether executing a node may exit normally (versus
/// return/break/panic, which "diverge", leaving dead code in their
/// wake). Tracked semi-automatically (through type variables marked
/// as diverging), with some manual adjustments for control-flow
/// primitives (approximating a CFG).
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub enum Diverges {
/// Potentially unknown, some cases converge,
/// others require a CFG to determine them.
Maybe,
/// Definitely known to diverge and therefore
/// not reach the next sibling or its parent.
Always {
/// The `Span` points to the expression
/// that caused us to diverge
/// (e.g. `return`, `break`, etc).
span: Span,
/// In some cases (e.g. a `match` expression
/// where all arms diverge), we may be
/// able to provide a more informative
/// message to the user.
/// If this is `None`, a default message
/// will be generated, which is suitable
/// for most cases.
custom_note: Option<&'static str>,
},
/// Same as `Always` but with a reachability
/// warning already emitted.
WarnedAlways,
}
// Convenience impls for combining `Diverges`.
impl ops::BitAnd for Diverges {
type Output = Self;
fn bitand(self, other: Self) -> Self {
cmp::min(self, other)
}
}
impl ops::BitOr for Diverges {
type Output = Self;
fn bitor(self, other: Self) -> Self {
cmp::max(self, other)
}
}
impl ops::BitAndAssign for Diverges {
fn bitand_assign(&mut self, other: Self) {
*self = *self & other;
}
}
impl ops::BitOrAssign for Diverges {
fn bitor_assign(&mut self, other: Self) {
*self = *self | other;
}
}
impl Diverges {
/// Creates a `Diverges::Always` with the provided `span` and the default note message.
pub(super) fn always(span: Span) -> Diverges {
Diverges::Always { span, custom_note: None }
}
pub(super) fn is_always(self) -> bool {
// Enum comparison ignores the
// contents of fields, so we just
// fill them in with garbage here.
self >= Diverges::Always { span: DUMMY_SP, custom_note: None }
}
}

View File

@ -0,0 +1,117 @@
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::{self, Ty};
use rustc_span::{self, Span};
use super::Expectation::*;
use super::FnCtxt;
/// When type-checking an expression, we propagate downward
/// whatever type hint we are able in the form of an `Expectation`.
#[derive(Copy, Clone, Debug)]
pub enum Expectation<'tcx> {
/// We know nothing about what type this expression should have.
NoExpectation,
/// This expression should have the type given (or some subtype).
ExpectHasType(Ty<'tcx>),
/// This expression will be cast to the `Ty`.
ExpectCastableToType(Ty<'tcx>),
/// This rvalue expression will be wrapped in `&` or `Box` and coerced
/// to `&Ty` or `Box<Ty>`, respectively. `Ty` is `[A]` or `Trait`.
ExpectRvalueLikeUnsized(Ty<'tcx>),
}
impl<'a, 'tcx> Expectation<'tcx> {
// Disregard "castable to" expectations because they
// can lead us astray. Consider for example `if cond
// {22} else {c} as u8` -- if we propagate the
// "castable to u8" constraint to 22, it will pick the
// type 22u8, which is overly constrained (c might not
// be a u8). In effect, the problem is that the
// "castable to" expectation is not the tightest thing
// we can say, so we want to drop it in this case.
// The tightest thing we can say is "must unify with
// else branch". Note that in the case of a "has type"
// constraint, this limitation does not hold.
// If the expected type is just a type variable, then don't use
// an expected type. Otherwise, we might write parts of the type
// when checking the 'then' block which are incompatible with the
// 'else' branch.
pub(super) fn adjust_for_branches(&self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> {
match *self {
ExpectHasType(ety) => {
let ety = fcx.shallow_resolve(ety);
if !ety.is_ty_var() { ExpectHasType(ety) } else { NoExpectation }
}
ExpectRvalueLikeUnsized(ety) => ExpectRvalueLikeUnsized(ety),
_ => NoExpectation,
}
}
/// Provides an expectation for an rvalue expression given an *optional*
/// hint, which is not required for type safety (the resulting type might
/// be checked higher up, as is the case with `&expr` and `box expr`), but
/// is useful in determining the concrete type.
///
/// The primary use case is where the expected type is a fat pointer,
/// like `&[isize]`. For example, consider the following statement:
///
/// let x: &[isize] = &[1, 2, 3];
///
/// In this case, the expected type for the `&[1, 2, 3]` expression is
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
/// expectation `ExpectHasType([isize])`, that would be too strong --
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
/// which still is useful, because it informs integer literals and the like.
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
/// for examples of where this comes up,.
pub(super) fn rvalue_hint(fcx: &FnCtxt<'a, 'tcx>, ty: Ty<'tcx>) -> Expectation<'tcx> {
match fcx.tcx.struct_tail_without_normalization(ty).kind() {
ty::Slice(_) | ty::Str | ty::Dynamic(..) => ExpectRvalueLikeUnsized(ty),
_ => ExpectHasType(ty),
}
}
// Resolves `expected` by a single level if it is a variable. If
// there is no expected type or resolution is not possible (e.g.,
// no constraints yet present), just returns `None`.
fn resolve(self, fcx: &FnCtxt<'a, 'tcx>) -> Expectation<'tcx> {
match self {
NoExpectation => NoExpectation,
ExpectCastableToType(t) => ExpectCastableToType(fcx.resolve_vars_if_possible(&t)),
ExpectHasType(t) => ExpectHasType(fcx.resolve_vars_if_possible(&t)),
ExpectRvalueLikeUnsized(t) => ExpectRvalueLikeUnsized(fcx.resolve_vars_if_possible(&t)),
}
}
pub(super) fn to_option(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
match self.resolve(fcx) {
NoExpectation => None,
ExpectCastableToType(ty) | ExpectHasType(ty) | ExpectRvalueLikeUnsized(ty) => Some(ty),
}
}
/// It sometimes happens that we want to turn an expectation into
/// a **hard constraint** (i.e., something that must be satisfied
/// for the program to type-check). `only_has_type` will return
/// such a constraint, if it exists.
pub(super) fn only_has_type(self, fcx: &FnCtxt<'a, 'tcx>) -> Option<Ty<'tcx>> {
match self.resolve(fcx) {
ExpectHasType(ty) => Some(ty),
NoExpectation | ExpectCastableToType(_) | ExpectRvalueLikeUnsized(_) => None,
}
}
/// Like `only_has_type`, but instead of returning `None` if no
/// hard constraint exists, creates a fresh type variable.
pub(super) fn coercion_target_type(self, fcx: &FnCtxt<'a, 'tcx>, span: Span) -> Ty<'tcx> {
self.only_has_type(fcx).unwrap_or_else(|| {
fcx.next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span })
})
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,120 @@
use crate::check::{FnCtxt, LocalTy, UserType};
use rustc_hir as hir;
use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
use rustc_hir::PatKind;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_middle::ty::Ty;
use rustc_span::Span;
use rustc_trait_selection::traits;
pub(super) struct GatherLocalsVisitor<'a, 'tcx> {
fcx: &'a FnCtxt<'a, 'tcx>,
parent_id: hir::HirId,
}
impl<'a, 'tcx> GatherLocalsVisitor<'a, 'tcx> {
pub(super) fn new(fcx: &'a FnCtxt<'a, 'tcx>, parent_id: hir::HirId) -> Self {
Self { fcx, parent_id }
}
fn assign(&mut self, span: Span, nid: hir::HirId, ty_opt: Option<LocalTy<'tcx>>) -> Ty<'tcx> {
match ty_opt {
None => {
// Infer the variable's type.
let var_ty = self.fcx.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::TypeInference,
span,
});
self.fcx
.locals
.borrow_mut()
.insert(nid, LocalTy { decl_ty: var_ty, revealed_ty: var_ty });
var_ty
}
Some(typ) => {
// Take type that the user specified.
self.fcx.locals.borrow_mut().insert(nid, typ);
typ.revealed_ty
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for GatherLocalsVisitor<'a, 'tcx> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
// Add explicitly-declared locals.
fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
let local_ty = match local.ty {
Some(ref ty) => {
let o_ty = self.fcx.to_ty(&ty);
let revealed_ty = if self.fcx.tcx.features().impl_trait_in_bindings {
self.fcx.instantiate_opaque_types_from_value(self.parent_id, &o_ty, ty.span)
} else {
o_ty
};
let c_ty = self
.fcx
.inh
.infcx
.canonicalize_user_type_annotation(&UserType::Ty(revealed_ty));
debug!(
"visit_local: ty.hir_id={:?} o_ty={:?} revealed_ty={:?} c_ty={:?}",
ty.hir_id, o_ty, revealed_ty, c_ty
);
self.fcx
.typeck_results
.borrow_mut()
.user_provided_types_mut()
.insert(ty.hir_id, c_ty);
Some(LocalTy { decl_ty: o_ty, revealed_ty })
}
None => None,
};
self.assign(local.span, local.hir_id, local_ty);
debug!(
"local variable {:?} is assigned type {}",
local.pat,
self.fcx.ty_to_string(&*self.fcx.locals.borrow().get(&local.hir_id).unwrap().decl_ty)
);
intravisit::walk_local(self, local);
}
// Add pattern bindings.
fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
if let PatKind::Binding(_, _, ident, _) = p.kind {
let var_ty = self.assign(p.span, p.hir_id, None);
if !self.fcx.tcx.features().unsized_locals {
self.fcx.require_type_is_sized(var_ty, p.span, traits::VariableType(p.hir_id));
}
debug!(
"pattern binding {} is assigned to {} with type {:?}",
ident,
self.fcx.ty_to_string(&*self.fcx.locals.borrow().get(&p.hir_id).unwrap().decl_ty),
var_ty
);
}
intravisit::walk_pat(self, p);
}
// Don't descend into the bodies of nested closures.
fn visit_fn(
&mut self,
_: intravisit::FnKind<'tcx>,
_: &'tcx hir::FnDecl<'tcx>,
_: hir::BodyId,
_: Span,
_: hir::HirId,
) {
}
}

View File

@ -0,0 +1,167 @@
use super::callee::DeferredCallResolution;
use super::MaybeInProgressTables;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir as hir;
use rustc_hir::def_id::{DefIdMap, LocalDefId};
use rustc_hir::HirIdMap;
use rustc_infer::infer;
use rustc_infer::infer::{InferCtxt, InferOk, TyCtxtInferExt};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::{self, Span};
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::opaque_types::OpaqueTypeDecl;
use rustc_trait_selection::traits::{self, TraitEngine, TraitEngineExt};
use std::cell::RefCell;
use std::ops::Deref;
/// Closures defined within the function. For example:
///
/// fn foo() {
/// bar(move|| { ... })
/// }
///
/// Here, the function `foo()` and the closure passed to
/// `bar()` will each have their own `FnCtxt`, but they will
/// share the inherited fields.
pub struct Inherited<'a, 'tcx> {
pub(super) infcx: InferCtxt<'a, 'tcx>,
pub(super) typeck_results: super::MaybeInProgressTables<'a, 'tcx>,
pub(super) locals: RefCell<HirIdMap<super::LocalTy<'tcx>>>,
pub(super) fulfillment_cx: RefCell<Box<dyn TraitEngine<'tcx>>>,
// Some additional `Sized` obligations badly affect type inference.
// These obligations are added in a later stage of typeck.
pub(super) deferred_sized_obligations:
RefCell<Vec<(Ty<'tcx>, Span, traits::ObligationCauseCode<'tcx>)>>,
// When we process a call like `c()` where `c` is a closure type,
// we may not have decided yet whether `c` is a `Fn`, `FnMut`, or
// `FnOnce` closure. In that case, we defer full resolution of the
// call until upvar inference can kick in and make the
// decision. We keep these deferred resolutions grouped by the
// def-id of the closure, so that once we decide, we can easily go
// back and process them.
pub(super) deferred_call_resolutions: RefCell<DefIdMap<Vec<DeferredCallResolution<'tcx>>>>,
pub(super) deferred_cast_checks: RefCell<Vec<super::cast::CastCheck<'tcx>>>,
pub(super) deferred_generator_interiors:
RefCell<Vec<(hir::BodyId, Ty<'tcx>, hir::GeneratorKind)>>,
// Opaque types found in explicit return types and their
// associated fresh inference variable. Writeback resolves these
// variables to get the concrete type, which can be used to
// 'de-opaque' OpaqueTypeDecl, after typeck is done with all functions.
pub(super) opaque_types: RefCell<DefIdMap<OpaqueTypeDecl<'tcx>>>,
/// A map from inference variables created from opaque
/// type instantiations (`ty::Infer`) to the actual opaque
/// type (`ty::Opaque`). Used during fallback to map unconstrained
/// opaque type inference variables to their corresponding
/// opaque type.
pub(super) opaque_types_vars: RefCell<FxHashMap<Ty<'tcx>, Ty<'tcx>>>,
pub(super) body_id: Option<hir::BodyId>,
}
impl<'a, 'tcx> Deref for Inherited<'a, 'tcx> {
type Target = InferCtxt<'a, 'tcx>;
fn deref(&self) -> &Self::Target {
&self.infcx
}
}
/// Helper type of a temporary returned by `Inherited::build(...)`.
/// Necessary because we can't write the following bound:
/// `F: for<'b, 'tcx> where 'tcx FnOnce(Inherited<'b, 'tcx>)`.
pub struct InheritedBuilder<'tcx> {
infcx: infer::InferCtxtBuilder<'tcx>,
def_id: LocalDefId,
}
impl Inherited<'_, 'tcx> {
pub fn build(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> InheritedBuilder<'tcx> {
let hir_owner = tcx.hir().local_def_id_to_hir_id(def_id).owner;
InheritedBuilder {
infcx: tcx.infer_ctxt().with_fresh_in_progress_typeck_results(hir_owner),
def_id,
}
}
}
impl<'tcx> InheritedBuilder<'tcx> {
pub fn enter<F, R>(&mut self, f: F) -> R
where
F: for<'a> FnOnce(Inherited<'a, 'tcx>) -> R,
{
let def_id = self.def_id;
self.infcx.enter(|infcx| f(Inherited::new(infcx, def_id)))
}
}
impl Inherited<'a, 'tcx> {
pub(super) fn new(infcx: InferCtxt<'a, 'tcx>, def_id: LocalDefId) -> Self {
let tcx = infcx.tcx;
let item_id = tcx.hir().local_def_id_to_hir_id(def_id);
let body_id = tcx.hir().maybe_body_owned_by(item_id);
Inherited {
typeck_results: MaybeInProgressTables {
maybe_typeck_results: infcx.in_progress_typeck_results,
},
infcx,
fulfillment_cx: RefCell::new(TraitEngine::new(tcx)),
locals: RefCell::new(Default::default()),
deferred_sized_obligations: RefCell::new(Vec::new()),
deferred_call_resolutions: RefCell::new(Default::default()),
deferred_cast_checks: RefCell::new(Vec::new()),
deferred_generator_interiors: RefCell::new(Vec::new()),
opaque_types: RefCell::new(Default::default()),
opaque_types_vars: RefCell::new(Default::default()),
body_id,
}
}
pub(super) fn register_predicate(&self, obligation: traits::PredicateObligation<'tcx>) {
debug!("register_predicate({:?})", obligation);
if obligation.has_escaping_bound_vars() {
span_bug!(obligation.cause.span, "escaping bound vars in predicate {:?}", obligation);
}
self.fulfillment_cx.borrow_mut().register_predicate_obligation(self, obligation);
}
pub(super) fn register_predicates<I>(&self, obligations: I)
where
I: IntoIterator<Item = traits::PredicateObligation<'tcx>>,
{
for obligation in obligations {
self.register_predicate(obligation);
}
}
pub(super) fn register_infer_ok_obligations<T>(&self, infer_ok: InferOk<'tcx, T>) -> T {
self.register_predicates(infer_ok.obligations);
infer_ok.value
}
pub(super) fn normalize_associated_types_in<T>(
&self,
span: Span,
body_id: hir::HirId,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> T
where
T: TypeFoldable<'tcx>,
{
let ok = self.partially_normalize_associated_types_in(span, body_id, param_env, value);
self.register_infer_ok_obligations(ok)
}
}

File diff suppressed because it is too large Load Diff