Auto merge of #61937 - AaronKutch:master, r=scottmcm
Improve `ptr_rotate` performance, tests, and benches The corresponding issue is #61784. I am not actually sure if miri can handle the test, but I can change the commit if necessary.
This commit is contained in:
commit
d8f8be4636
@ -55,3 +55,29 @@ fn binary_search_l2_with_dups(b: &mut Bencher) {
|
||||
fn binary_search_l3_with_dups(b: &mut Bencher) {
|
||||
binary_search(b, Cache::L3, |i| i / 16 * 16);
|
||||
}
|
||||
|
||||
macro_rules! rotate {
|
||||
($fn:ident, $n:expr, $mapper:expr) => {
|
||||
#[bench]
|
||||
fn $fn(b: &mut Bencher) {
|
||||
let mut x = (0usize..$n).map(&$mapper).collect::<Vec<_>>();
|
||||
b.iter(|| {
|
||||
for s in 0..x.len() {
|
||||
x[..].rotate_right(s);
|
||||
}
|
||||
black_box(x[0].clone())
|
||||
})
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct Rgb(u8, u8, u8);
|
||||
|
||||
rotate!(rotate_u8, 32, |i| i as u8);
|
||||
rotate!(rotate_rgb, 32, |i| Rgb(i as u8, (i as u8).wrapping_add(7), (i as u8).wrapping_add(42)));
|
||||
rotate!(rotate_usize, 32, |i| i);
|
||||
rotate!(rotate_16_usize_4, 16, |i| [i; 4]);
|
||||
rotate!(rotate_16_usize_5, 16, |i| [i; 5]);
|
||||
rotate!(rotate_64_usize_4, 64, |i| [i; 4]);
|
||||
rotate!(rotate_64_usize_5, 64, |i| [i; 5]);
|
||||
|
@ -2,32 +2,9 @@ use crate::cmp;
|
||||
use crate::mem::{self, MaybeUninit};
|
||||
use crate::ptr;
|
||||
|
||||
/// Rotation is much faster if it has access to a little bit of memory. This
|
||||
/// union provides a RawVec-like interface, but to a fixed-size stack buffer.
|
||||
#[allow(unions_with_drop_fields)]
|
||||
union RawArray<T> {
|
||||
/// Ensure this is appropriately aligned for T, and is big
|
||||
/// enough for two elements even if T is enormous.
|
||||
typed: [T; 2],
|
||||
/// For normally-sized types, especially things like u8, having more
|
||||
/// than 2 in the buffer is necessary for usefulness, so pad it out
|
||||
/// enough to be helpful, but not so big as to risk overflow.
|
||||
_extra: [usize; 32],
|
||||
}
|
||||
|
||||
impl<T> RawArray<T> {
|
||||
fn capacity() -> usize {
|
||||
if mem::size_of::<T>() == 0 {
|
||||
usize::max_value()
|
||||
} else {
|
||||
mem::size_of::<Self>() / mem::size_of::<T>()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Rotates the range `[mid-left, mid+right)` such that the element at `mid`
|
||||
/// becomes the first element. Equivalently, rotates the range `left`
|
||||
/// elements to the left or `right` elements to the right.
|
||||
/// Rotates the range `[mid-left, mid+right)` such that the element at `mid` becomes the first
|
||||
/// element. Equivalently, rotates the range `left` elements to the left or `right` elements to the
|
||||
/// right.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
@ -35,55 +12,161 @@ impl<T> RawArray<T> {
|
||||
///
|
||||
/// # Algorithm
|
||||
///
|
||||
/// For longer rotations, swap the left-most `delta = min(left, right)`
|
||||
/// elements with the right-most `delta` elements. LLVM vectorizes this,
|
||||
/// which is profitable as we only reach this step for a "large enough"
|
||||
/// rotation. Doing this puts `delta` elements on the larger side into the
|
||||
/// correct position, leaving a smaller rotate problem. Demonstration:
|
||||
/// Algorithm 1 is used for small values of `left + right` or for large `T`. The elements are moved
|
||||
/// into their final positions one at a time starting at `mid - left` and advancing by `right` steps
|
||||
/// modulo `left + right`, such that only one temporary is needed. Eventually, we arrive back at
|
||||
/// `mid - left`. However, if `gcd(left + right, right)` is not 1, the above steps skipped over
|
||||
/// elements. For example:
|
||||
/// ```text
|
||||
/// left = 10, right = 6
|
||||
/// the `^` indicates an element in its final place
|
||||
/// 6 7 8 9 10 11 12 13 14 15 . 0 1 2 3 4 5
|
||||
/// after using one step of the above algorithm (The X will be overwritten at the end of the round,
|
||||
/// and 12 is stored in a temporary):
|
||||
/// X 7 8 9 10 11 6 13 14 15 . 0 1 2 3 4 5
|
||||
/// ^
|
||||
/// after using another step (now 2 is in the temporary):
|
||||
/// X 7 8 9 10 11 6 13 14 15 . 0 1 12 3 4 5
|
||||
/// ^ ^
|
||||
/// after the third step (the steps wrap around, and 8 is in the temporary):
|
||||
/// X 7 2 9 10 11 6 13 14 15 . 0 1 12 3 4 5
|
||||
/// ^ ^ ^
|
||||
/// after 7 more steps, the round ends with the temporary 0 getting put in the X:
|
||||
/// 0 7 2 9 4 11 6 13 8 15 . 10 1 12 3 14 5
|
||||
/// ^ ^ ^ ^ ^ ^ ^ ^
|
||||
/// ```
|
||||
/// Fortunately, the number of skipped over elements between finalized elements is always equal, so
|
||||
/// we can just offset our starting position and do more rounds (the total number of rounds is the
|
||||
/// `gcd(left + right, right)` value). The end result is that all elements are finalized once and
|
||||
/// only once.
|
||||
///
|
||||
/// Algorithm 2 is used if `left + right` is large but `min(left, right)` is small enough to
|
||||
/// fit onto a stack buffer. The `min(left, right)` elements are copied onto the buffer, `memmove`
|
||||
/// is applied to the others, and the ones on the buffer are moved back into the hole on the
|
||||
/// opposite side of where they originated.
|
||||
///
|
||||
/// Algorithms that can be vectorized outperform the above once `left + right` becomes large enough.
|
||||
/// Algorithm 1 can be vectorized by chunking and performing many rounds at once, but there are too
|
||||
/// few rounds on average until `left + right` is enormous, and the worst case of a single
|
||||
/// round is always there. Instead, algorithm 3 utilizes repeated swapping of
|
||||
/// `min(left, right)` elements until a smaller rotate problem is left.
|
||||
///
|
||||
/// ```text
|
||||
/// [ 6 7 8 9 10 11 12 13 . 1 2 3 4 5 ]
|
||||
/// 1 2 3 4 5 [ 11 12 13 . 6 7 8 9 10 ]
|
||||
/// 1 2 3 4 5 [ 8 9 10 . 6 7 ] 11 12 13
|
||||
/// 1 2 3 4 5 6 7 [ 10 . 8 9 ] 11 12 13
|
||||
/// 1 2 3 4 5 6 7 [ 9 . 8 ] 10 11 12 13
|
||||
/// 1 2 3 4 5 6 7 8 [ . ] 9 10 11 12 13
|
||||
/// left = 11, right = 4
|
||||
/// [4 5 6 7 8 9 10 11 12 13 14 . 0 1 2 3]
|
||||
/// ^ ^ ^ ^ ^ ^ ^ ^ swapping the right most elements with elements to the left
|
||||
/// [4 5 6 7 8 9 10 . 0 1 2 3] 11 12 13 14
|
||||
/// ^ ^ ^ ^ ^ ^ ^ ^ swapping these
|
||||
/// [4 5 6 . 0 1 2 3] 7 8 9 10 11 12 13 14
|
||||
/// we cannot swap any more, but a smaller rotation problem is left to solve
|
||||
/// ```
|
||||
///
|
||||
/// Once the rotation is small enough, copy some elements into a stack
|
||||
/// buffer, `memmove` the others, and move the ones back from the buffer.
|
||||
pub unsafe fn ptr_rotate<T>(mut left: usize, mid: *mut T, mut right: usize) {
|
||||
/// when `left < right` the swapping happens from the left instead.
|
||||
pub unsafe fn ptr_rotate<T>(mut left: usize, mut mid: *mut T, mut right: usize) {
|
||||
type BufType = [usize; 32];
|
||||
if mem::size_of::<T>() == 0 {
|
||||
return;
|
||||
}
|
||||
loop {
|
||||
let delta = cmp::min(left, right);
|
||||
if delta <= RawArray::<T>::capacity() {
|
||||
// We will always hit this immediately for ZST.
|
||||
break;
|
||||
// N.B. the below algorithms can fail if these cases are not checked
|
||||
if (right == 0) || (left == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
ptr::swap_nonoverlapping(
|
||||
mid.sub(left),
|
||||
mid.add(right - delta),
|
||||
delta);
|
||||
|
||||
if left <= right {
|
||||
right -= delta;
|
||||
if (left + right < 24) || (mem::size_of::<T>() > mem::size_of::<[usize; 4]>()) {
|
||||
// Algorithm 1
|
||||
// Microbenchmarks indicate that the average performance for random shifts is better all
|
||||
// the way until about `left + right == 32`, but the worst case performance breaks even
|
||||
// around 16. 24 was chosen as middle ground. If the size of `T` is larger than 4
|
||||
// `usize`s, this algorithm also outperforms other algorithms.
|
||||
let x = mid.sub(left);
|
||||
// beginning of first round
|
||||
let mut tmp: T = x.read();
|
||||
let mut i = right;
|
||||
// `gcd` can be found before hand by calculating `gcd(left + right, right)`,
|
||||
// but it is faster to do one loop which calculates the gcd as a side effect, then
|
||||
// doing the rest of the chunk
|
||||
let mut gcd = right;
|
||||
// benchmarks reveal that it is faster to swap temporaries all the way through instead
|
||||
// of reading one temporary once, copying backwards, and then writing that temporary at
|
||||
// the very end. This is possibly due to the fact that swapping or replacing temporaries
|
||||
// uses only one memory address in the loop instead of needing to manage two.
|
||||
loop {
|
||||
tmp = x.add(i).replace(tmp);
|
||||
// instead of incrementing `i` and then checking if it is outside the bounds, we
|
||||
// check if `i` will go outside the bounds on the next increment. This prevents
|
||||
// any wrapping of pointers or `usize`.
|
||||
if i >= left {
|
||||
i -= left;
|
||||
if i == 0 {
|
||||
// end of first round
|
||||
x.write(tmp);
|
||||
break;
|
||||
}
|
||||
// this conditional must be here if `left + right >= 15`
|
||||
if i < gcd {
|
||||
gcd = i;
|
||||
}
|
||||
} else {
|
||||
i += right;
|
||||
}
|
||||
}
|
||||
// finish the chunk with more rounds
|
||||
for start in 1..gcd {
|
||||
tmp = x.add(start).read();
|
||||
i = start + right;
|
||||
loop {
|
||||
tmp = x.add(i).replace(tmp);
|
||||
if i >= left {
|
||||
i -= left;
|
||||
if i == start {
|
||||
x.add(start).write(tmp);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
i += right;
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
// `T` is not a zero-sized type, so it's okay to divide by its size.
|
||||
} else if cmp::min(left, right) <= mem::size_of::<BufType>() / mem::size_of::<T>() {
|
||||
// Algorithm 2
|
||||
// The `[T; 0]` here is to ensure this is appropriately aligned for T
|
||||
let mut rawarray = MaybeUninit::<(BufType, [T; 0])>::uninit();
|
||||
let buf = rawarray.as_mut_ptr() as *mut T;
|
||||
let dim = mid.sub(left).add(right);
|
||||
if left <= right {
|
||||
ptr::copy_nonoverlapping(mid.sub(left), buf, left);
|
||||
ptr::copy(mid, mid.sub(left), right);
|
||||
ptr::copy_nonoverlapping(buf, dim, left);
|
||||
} else {
|
||||
ptr::copy_nonoverlapping(mid, buf, right);
|
||||
ptr::copy(mid.sub(left), dim, left);
|
||||
ptr::copy_nonoverlapping(buf, mid.sub(left), right);
|
||||
}
|
||||
return;
|
||||
} else if left >= right {
|
||||
// Algorithm 3
|
||||
// There is an alternate way of swapping that involves finding where the last swap
|
||||
// of this algorithm would be, and swapping using that last chunk instead of swapping
|
||||
// adjacent chunks like this algorithm is doing, but this way is still faster.
|
||||
loop {
|
||||
ptr::swap_nonoverlapping(mid.sub(right), mid, right);
|
||||
mid = mid.sub(right);
|
||||
left -= right;
|
||||
if left < right {
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
left -= delta;
|
||||
// Algorithm 3, `left < right`
|
||||
loop {
|
||||
ptr::swap_nonoverlapping(mid.sub(left), mid, left);
|
||||
mid = mid.add(left);
|
||||
right -= left;
|
||||
if right < left {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let mut rawarray = MaybeUninit::<RawArray<T>>::uninit();
|
||||
let buf = &mut (*rawarray.as_mut_ptr()).typed as *mut [T; 2] as *mut T;
|
||||
|
||||
let dim = mid.sub(left).add(right);
|
||||
if left <= right {
|
||||
ptr::copy_nonoverlapping(mid.sub(left), buf, left);
|
||||
ptr::copy(mid, mid.sub(left), right);
|
||||
ptr::copy_nonoverlapping(buf, dim, left);
|
||||
}
|
||||
else {
|
||||
ptr::copy_nonoverlapping(mid, buf, right);
|
||||
ptr::copy(mid.sub(left), dim, left);
|
||||
ptr::copy_nonoverlapping(buf, mid.sub(left), right);
|
||||
}
|
||||
}
|
||||
|
@ -1152,6 +1152,44 @@ fn test_rotate_right() {
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(miri))]
|
||||
fn brute_force_rotate_test_0() {
|
||||
// In case of edge cases involving multiple algorithms
|
||||
let n = 300;
|
||||
for len in 0..n {
|
||||
for s in 0..len {
|
||||
let mut v = Vec::with_capacity(len);
|
||||
for i in 0..len {
|
||||
v.push(i);
|
||||
}
|
||||
v[..].rotate_right(s);
|
||||
for i in 0..v.len() {
|
||||
assert_eq!(v[i], v.len().wrapping_add(i.wrapping_sub(s)) % v.len());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn brute_force_rotate_test_1() {
|
||||
// `ptr_rotate` covers so many kinds of pointer usage, that this is just a good test for
|
||||
// pointers in general. This uses a `[usize; 4]` to hit all algorithms without overwhelming miri
|
||||
let n = 30;
|
||||
for len in 0..n {
|
||||
for s in 0..len {
|
||||
let mut v: Vec<[usize; 4]> = Vec::with_capacity(len);
|
||||
for i in 0..len {
|
||||
v.push([i, 0, 0, 0]);
|
||||
}
|
||||
v[..].rotate_right(s);
|
||||
for i in 0..v.len() {
|
||||
assert_eq!(v[i][0], v.len().wrapping_add(i.wrapping_sub(s)) % v.len());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
fn sort_unstable() {
|
||||
|
Loading…
Reference in New Issue
Block a user