Add Fractional, Real and RealExt traits

This commit is contained in:
Brendan Zabarauskas 2013-04-25 08:12:26 +10:00
parent 6fa054df96
commit dcd49ccd0b
6 changed files with 724 additions and 71 deletions

View File

@ -105,6 +105,7 @@ pub use iter::{ExtendedMutableIter};
pub use num::{Num, NumCast};
pub use num::{Signed, Unsigned, Integer};
pub use num::{Fractional, Real, RealExt};
pub use ptr::Ptr;
pub use to_str::ToStr;
pub use clone::Clone;

View File

@ -327,31 +327,176 @@ impl Signed for f32 {
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
}
impl num::Round for f32 {
impl Fractional for f32 {
/// The reciprocal (multiplicative inverse) of the number
#[inline(always)]
fn round(&self, mode: num::RoundMode) -> f32 {
match mode {
num::RoundDown => floor(*self),
num::RoundUp => ceil(*self),
num::RoundToZero if self.is_negative() => ceil(*self),
num::RoundToZero => floor(*self),
num::RoundFromZero if self.is_negative() => floor(*self),
num::RoundFromZero => ceil(*self)
}
}
fn recip(&self) -> f32 { 1.0 / *self }
}
impl Real for f32 {
/// Archimedes' constant
#[inline(always)]
fn pi() -> f32 { 3.14159265358979323846264338327950288 }
/// 2.0 * pi
#[inline(always)]
fn two_pi() -> f32 { 6.28318530717958647692528676655900576 }
/// pi / 2.0
#[inline(always)]
fn frac_pi_2() -> f32 { 1.57079632679489661923132169163975144 }
/// pi / 3.0
#[inline(always)]
fn frac_pi_3() -> f32 { 1.04719755119659774615421446109316763 }
/// pi / 4.0
#[inline(always)]
fn frac_pi_4() -> f32 { 0.785398163397448309615660845819875721 }
/// pi / 6.0
#[inline(always)]
fn frac_pi_6() -> f32 { 0.52359877559829887307710723054658381 }
/// pi / 8.0
#[inline(always)]
fn frac_pi_8() -> f32 { 0.39269908169872415480783042290993786 }
/// 1 .0/ pi
#[inline(always)]
fn frac_1_pi() -> f32 { 0.318309886183790671537767526745028724 }
/// 2.0 / pi
#[inline(always)]
fn frac_2_pi() -> f32 { 0.636619772367581343075535053490057448 }
/// 2.0 / sqrt(pi)
#[inline(always)]
fn frac_2_sqrtpi() -> f32 { 1.12837916709551257389615890312154517 }
/// sqrt(2.0)
#[inline(always)]
fn sqrt2() -> f32 { 1.41421356237309504880168872420969808 }
/// 1.0 / sqrt(2.0)
#[inline(always)]
fn frac_1_sqrt2() -> f32 { 0.707106781186547524400844362104849039 }
/// Euler's number
#[inline(always)]
fn e() -> f32 { 2.71828182845904523536028747135266250 }
/// log2(e)
#[inline(always)]
fn log2_e() -> f32 { 1.44269504088896340735992468100189214 }
/// log10(e)
#[inline(always)]
fn log10_e() -> f32 { 0.434294481903251827651128918916605082 }
/// log(2.0)
#[inline(always)]
fn log_2() -> f32 { 0.693147180559945309417232121458176568 }
/// log(10.0)
#[inline(always)]
fn log_10() -> f32 { 2.30258509299404568401799145468436421 }
#[inline(always)]
fn floor(&self) -> f32 { floor(*self) }
#[inline(always)]
fn ceil(&self) -> f32 { ceil(*self) }
#[inline(always)]
fn fract(&self) -> f32 {
if self.is_negative() {
(*self) - ceil(*self)
} else {
(*self) - floor(*self)
}
}
fn round(&self) -> f32 { round(*self) }
#[inline(always)]
fn trunc(&self) -> f32 { trunc(*self) }
/// The fractional part of the number, calculated using: `n - floor(n)`
#[inline(always)]
fn fract(&self) -> f32 { *self - self.floor() }
#[inline(always)]
fn pow(&self, n: f32) -> f32 { pow(*self, n) }
#[inline(always)]
fn exp(&self) -> f32 { exp(*self) }
#[inline(always)]
fn exp2(&self) -> f32 { exp2(*self) }
#[inline(always)]
fn expm1(&self) -> f32 { expm1(*self) }
#[inline(always)]
fn ldexp(&self, n: int) -> f32 { ldexp(*self, n as c_int) }
#[inline(always)]
fn log(&self) -> f32 { ln(*self) }
#[inline(always)]
fn log2(&self) -> f32 { log2(*self) }
#[inline(always)]
fn log10(&self) -> f32 { log10(*self) }
#[inline(always)]
fn log_radix(&self) -> f32 { log_radix(*self) as f32 }
#[inline(always)]
fn ilog_radix(&self) -> int { ilog_radix(*self) as int }
#[inline(always)]
fn sqrt(&self) -> f32 { sqrt(*self) }
#[inline(always)]
fn rsqrt(&self) -> f32 { self.sqrt().recip() }
#[inline(always)]
fn cbrt(&self) -> f32 { cbrt(*self) }
/// Converts to degrees, assuming the number is in radians
#[inline(always)]
fn to_degrees(&self) -> f32 { *self * (180.0 / Real::pi::<f32>()) }
/// Converts to radians, assuming the number is in degrees
#[inline(always)]
fn to_radians(&self) -> f32 { *self * (Real::pi::<f32>() / 180.0) }
#[inline(always)]
fn hypot(&self, other: f32) -> f32 { hypot(*self, other) }
#[inline(always)]
fn sin(&self) -> f32 { sin(*self) }
#[inline(always)]
fn cos(&self) -> f32 { cos(*self) }
#[inline(always)]
fn tan(&self) -> f32 { tan(*self) }
#[inline(always)]
fn asin(&self) -> f32 { asin(*self) }
#[inline(always)]
fn acos(&self) -> f32 { acos(*self) }
#[inline(always)]
fn atan(&self) -> f32 { atan(*self) }
#[inline(always)]
fn atan2(&self, other: f32) -> f32 { atan2(*self, other) }
#[inline(always)]
fn sinh(&self) -> f32 { sinh(*self) }
#[inline(always)]
fn cosh(&self) -> f32 { cosh(*self) }
#[inline(always)]
fn tanh(&self) -> f32 { tanh(*self) }
}
/**
@ -577,11 +722,39 @@ mod tests {
use super::*;
use prelude::*;
macro_rules! assert_fuzzy_eq(
($a:expr, $b:expr) => ({
let a = $a, b = $b;
if !((a - b).abs() < 1.0e-6) {
fail!(fmt!("The values were not approximately equal. Found: %? and %?", a, b));
}
})
)
#[test]
fn test_num() {
num::test_num(10f32, 2f32);
}
#[test]
fn test_real_consts() {
assert_fuzzy_eq!(Real::two_pi::<f32>(), 2f32 * Real::pi::<f32>());
assert_fuzzy_eq!(Real::frac_pi_2::<f32>(), Real::pi::<f32>() / 2f32);
assert_fuzzy_eq!(Real::frac_pi_3::<f32>(), Real::pi::<f32>() / 3f32);
assert_fuzzy_eq!(Real::frac_pi_4::<f32>(), Real::pi::<f32>() / 4f32);
assert_fuzzy_eq!(Real::frac_pi_6::<f32>(), Real::pi::<f32>() / 6f32);
assert_fuzzy_eq!(Real::frac_pi_8::<f32>(), Real::pi::<f32>() / 8f32);
assert_fuzzy_eq!(Real::frac_1_pi::<f32>(), 1f32 / Real::pi::<f32>());
assert_fuzzy_eq!(Real::frac_2_pi::<f32>(), 2f32 / Real::pi::<f32>());
assert_fuzzy_eq!(Real::frac_2_sqrtpi::<f32>(), 2f32 / Real::pi::<f32>().sqrt());
assert_fuzzy_eq!(Real::sqrt2::<f32>(), 2f32.sqrt());
assert_fuzzy_eq!(Real::frac_1_sqrt2::<f32>(), 1f32 / 2f32.sqrt());
assert_fuzzy_eq!(Real::log2_e::<f32>(), Real::e::<f32>().log2());
assert_fuzzy_eq!(Real::log10_e::<f32>(), Real::e::<f32>().log10());
assert_fuzzy_eq!(Real::log_2::<f32>(), 2f32.log());
assert_fuzzy_eq!(Real::log_10::<f32>(), 10f32.log());
}
#[test]
pub fn test_signed() {
assert_eq!(infinity.abs(), infinity);

View File

@ -337,31 +337,206 @@ impl Signed for f64 {
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
}
impl num::Round for f64 {
impl Fractional for f64 {
/// The reciprocal (multiplicative inverse) of the number
#[inline(always)]
fn round(&self, mode: num::RoundMode) -> f64 {
match mode {
num::RoundDown => floor(*self),
num::RoundUp => ceil(*self),
num::RoundToZero if self.is_negative() => ceil(*self),
num::RoundToZero => floor(*self),
num::RoundFromZero if self.is_negative() => floor(*self),
num::RoundFromZero => ceil(*self)
}
}
fn recip(&self) -> f64 { 1.0 / *self }
}
impl Real for f64 {
/// Archimedes' constant
#[inline(always)]
fn pi() -> f64 { 3.14159265358979323846264338327950288 }
/// 2.0 * pi
#[inline(always)]
fn two_pi() -> f64 { 6.28318530717958647692528676655900576 }
/// pi / 2.0
#[inline(always)]
fn frac_pi_2() -> f64 { 1.57079632679489661923132169163975144 }
/// pi / 3.0
#[inline(always)]
fn frac_pi_3() -> f64 { 1.04719755119659774615421446109316763 }
/// pi / 4.0
#[inline(always)]
fn frac_pi_4() -> f64 { 0.785398163397448309615660845819875721 }
/// pi / 6.0
#[inline(always)]
fn frac_pi_6() -> f64 { 0.52359877559829887307710723054658381 }
/// pi / 8.0
#[inline(always)]
fn frac_pi_8() -> f64 { 0.39269908169872415480783042290993786 }
/// 1.0 / pi
#[inline(always)]
fn frac_1_pi() -> f64 { 0.318309886183790671537767526745028724 }
/// 2.0 / pi
#[inline(always)]
fn frac_2_pi() -> f64 { 0.636619772367581343075535053490057448 }
/// 2.0 / sqrt(pi)
#[inline(always)]
fn frac_2_sqrtpi() -> f64 { 1.12837916709551257389615890312154517 }
/// sqrt(2.0)
#[inline(always)]
fn sqrt2() -> f64 { 1.41421356237309504880168872420969808 }
/// 1.0 / sqrt(2.0)
#[inline(always)]
fn frac_1_sqrt2() -> f64 { 0.707106781186547524400844362104849039 }
/// Euler's number
#[inline(always)]
fn e() -> f64 { 2.71828182845904523536028747135266250 }
/// log2(e)
#[inline(always)]
fn log2_e() -> f64 { 1.44269504088896340735992468100189214 }
/// log10(e)
#[inline(always)]
fn log10_e() -> f64 { 0.434294481903251827651128918916605082 }
/// log(2.0)
#[inline(always)]
fn log_2() -> f64 { 0.693147180559945309417232121458176568 }
/// log(10.0)
#[inline(always)]
fn log_10() -> f64 { 2.30258509299404568401799145468436421 }
#[inline(always)]
fn floor(&self) -> f64 { floor(*self) }
#[inline(always)]
fn ceil(&self) -> f64 { ceil(*self) }
#[inline(always)]
fn fract(&self) -> f64 {
if self.is_negative() {
(*self) - ceil(*self)
} else {
(*self) - floor(*self)
}
fn round(&self) -> f64 { round(*self) }
#[inline(always)]
fn trunc(&self) -> f64 { trunc(*self) }
/// The fractional part of the number, calculated using: `n - floor(n)`
#[inline(always)]
fn fract(&self) -> f64 { *self - self.floor() }
#[inline(always)]
fn pow(&self, n: f64) -> f64 { pow(*self, n) }
#[inline(always)]
fn exp(&self) -> f64 { exp(*self) }
#[inline(always)]
fn exp2(&self) -> f64 { exp2(*self) }
#[inline(always)]
fn expm1(&self) -> f64 { expm1(*self) }
#[inline(always)]
fn ldexp(&self, n: int) -> f64 { ldexp(*self, n as c_int) }
#[inline(always)]
fn log(&self) -> f64 { ln(*self) }
#[inline(always)]
fn log2(&self) -> f64 { log2(*self) }
#[inline(always)]
fn log10(&self) -> f64 { log10(*self) }
#[inline(always)]
fn log_radix(&self) -> f64 { log_radix(*self) }
#[inline(always)]
fn ilog_radix(&self) -> int { ilog_radix(*self) as int }
#[inline(always)]
fn sqrt(&self) -> f64 { sqrt(*self) }
#[inline(always)]
fn rsqrt(&self) -> f64 { self.sqrt().recip() }
#[inline(always)]
fn cbrt(&self) -> f64 { cbrt(*self) }
/// Converts to degrees, assuming the number is in radians
#[inline(always)]
fn to_degrees(&self) -> f64 { *self * (180.0 / Real::pi::<f64>()) }
/// Converts to radians, assuming the number is in degrees
#[inline(always)]
fn to_radians(&self) -> f64 { *self * (Real::pi::<f64>() / 180.0) }
#[inline(always)]
fn hypot(&self, other: f64) -> f64 { hypot(*self, other) }
#[inline(always)]
fn sin(&self) -> f64 { sin(*self) }
#[inline(always)]
fn cos(&self) -> f64 { cos(*self) }
#[inline(always)]
fn tan(&self) -> f64 { tan(*self) }
#[inline(always)]
fn asin(&self) -> f64 { asin(*self) }
#[inline(always)]
fn acos(&self) -> f64 { acos(*self) }
#[inline(always)]
fn atan(&self) -> f64 { atan(*self) }
#[inline(always)]
fn atan2(&self, other: f64) -> f64 { atan2(*self, other) }
#[inline(always)]
fn sinh(&self) -> f64 { sinh(*self) }
#[inline(always)]
fn cosh(&self) -> f64 { cosh(*self) }
#[inline(always)]
fn tanh(&self) -> f64 { tanh(*self) }
}
impl RealExt for f64 {
#[inline(always)]
fn lgamma(&self) -> (int, f64) {
let mut sign = 0;
let result = lgamma(*self, &mut sign);
(sign as int, result)
}
#[inline(always)]
fn tgamma(&self) -> f64 { tgamma(*self) }
#[inline(always)]
fn j0(&self) -> f64 { j0(*self) }
#[inline(always)]
fn j1(&self) -> f64 { j1(*self) }
#[inline(always)]
fn jn(&self, n: int) -> f64 { jn(n as c_int, *self) }
#[inline(always)]
fn y0(&self) -> f64 { y0(*self) }
#[inline(always)]
fn y1(&self) -> f64 { y1(*self) }
#[inline(always)]
fn yn(&self, n: int) -> f64 { yn(n as c_int, *self) }
}
/**
@ -587,11 +762,39 @@ mod tests {
use super::*;
use prelude::*;
macro_rules! assert_fuzzy_eq(
($a:expr, $b:expr) => ({
let a = $a, b = $b;
if !((a - b).abs() < 1.0e-6) {
fail!(fmt!("The values were not approximately equal. Found: %? and %?", a, b));
}
})
)
#[test]
fn test_num() {
num::test_num(10f64, 2f64);
}
#[test]
fn test_real_consts() {
assert_fuzzy_eq!(Real::two_pi::<f64>(), 2.0 * Real::pi::<f64>());
assert_fuzzy_eq!(Real::frac_pi_2::<f64>(), Real::pi::<f64>() / 2f64);
assert_fuzzy_eq!(Real::frac_pi_3::<f64>(), Real::pi::<f64>() / 3f64);
assert_fuzzy_eq!(Real::frac_pi_4::<f64>(), Real::pi::<f64>() / 4f64);
assert_fuzzy_eq!(Real::frac_pi_6::<f64>(), Real::pi::<f64>() / 6f64);
assert_fuzzy_eq!(Real::frac_pi_8::<f64>(), Real::pi::<f64>() / 8f64);
assert_fuzzy_eq!(Real::frac_1_pi::<f64>(), 1f64 / Real::pi::<f64>());
assert_fuzzy_eq!(Real::frac_2_pi::<f64>(), 2f64 / Real::pi::<f64>());
assert_fuzzy_eq!(Real::frac_2_sqrtpi::<f64>(), 2f64 / Real::pi::<f64>().sqrt());
assert_fuzzy_eq!(Real::sqrt2::<f64>(), 2f64.sqrt());
assert_fuzzy_eq!(Real::frac_1_sqrt2::<f64>(), 1f64 / 2f64.sqrt());
assert_fuzzy_eq!(Real::log2_e::<f64>(), Real::e::<f64>().log2());
assert_fuzzy_eq!(Real::log10_e::<f64>(), Real::e::<f64>().log10());
assert_fuzzy_eq!(Real::log_2::<f64>(), 2f64.log());
assert_fuzzy_eq!(Real::log_10::<f64>(), 10f64.log());
}
#[test]
pub fn test_signed() {
assert_eq!(infinity.abs(), infinity);

View File

@ -403,37 +403,206 @@ impl num::One for float {
fn one() -> float { 1.0 }
}
impl num::Round for float {
impl Fractional for float {
/// The reciprocal (multiplicative inverse) of the number
#[inline(always)]
fn round(&self, mode: num::RoundMode) -> float {
match mode {
num::RoundDown
=> f64::floor(*self as f64) as float,
num::RoundUp
=> f64::ceil(*self as f64) as float,
num::RoundToZero if self.is_negative()
=> f64::ceil(*self as f64) as float,
num::RoundToZero
=> f64::floor(*self as f64) as float,
num::RoundFromZero if self.is_negative()
=> f64::floor(*self as f64) as float,
num::RoundFromZero
=> f64::ceil(*self as f64) as float
}
fn recip(&self) -> float { 1.0 / *self }
}
impl Real for float {
/// Archimedes' constant
#[inline(always)]
fn pi() -> float { 3.14159265358979323846264338327950288 }
/// 2.0 * pi
#[inline(always)]
fn two_pi() -> float { 6.28318530717958647692528676655900576 }
/// pi / 2.0
#[inline(always)]
fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 }
/// pi / 3.0
#[inline(always)]
fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 }
/// pi / 4.0
#[inline(always)]
fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 }
/// pi / 6.0
#[inline(always)]
fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 }
/// pi / 8.0
#[inline(always)]
fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 }
/// 1.0 / pi
#[inline(always)]
fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 }
/// 2.0 / pi
#[inline(always)]
fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 }
/// 2 .0/ sqrt(pi)
#[inline(always)]
fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 }
/// sqrt(2.0)
#[inline(always)]
fn sqrt2() -> float { 1.41421356237309504880168872420969808 }
/// 1.0 / sqrt(2.0)
#[inline(always)]
fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 }
/// Euler's number
#[inline(always)]
fn e() -> float { 2.71828182845904523536028747135266250 }
/// log2(e)
#[inline(always)]
fn log2_e() -> float { 1.44269504088896340735992468100189214 }
/// log10(e)
#[inline(always)]
fn log10_e() -> float { 0.434294481903251827651128918916605082 }
/// log(2.0)
#[inline(always)]
fn log_2() -> float { 0.693147180559945309417232121458176568 }
/// log(10.0)
#[inline(always)]
fn log_10() -> float { 2.30258509299404568401799145468436421 }
#[inline(always)]
fn floor(&self) -> float { floor(*self as f64) as float }
#[inline(always)]
fn ceil(&self) -> float { ceil(*self as f64) as float }
#[inline(always)]
fn round(&self) -> float { round(*self as f64) as float }
#[inline(always)]
fn trunc(&self) -> float { trunc(*self as f64) as float }
/// The fractional part of the number, calculated using: `n - floor(n)`
#[inline(always)]
fn fract(&self) -> float { *self - self.floor() }
#[inline(always)]
fn pow(&self, n: float) -> float { pow(*self as f64, n as f64) as float }
#[inline(always)]
fn exp(&self) -> float { exp(*self as f64) as float }
#[inline(always)]
fn exp2(&self) -> float { exp2(*self as f64) as float }
#[inline(always)]
fn expm1(&self) -> float { expm1(*self as f64) as float }
#[inline(always)]
fn ldexp(&self, n: int) -> float { ldexp(*self as f64, n as c_int) as float }
#[inline(always)]
fn log(&self) -> float { ln(*self as f64) as float }
#[inline(always)]
fn log2(&self) -> float { log2(*self as f64) as float }
#[inline(always)]
fn log10(&self) -> float { log10(*self as f64) as float }
#[inline(always)]
fn log_radix(&self) -> float { log_radix(*self as f64) as float }
#[inline(always)]
fn ilog_radix(&self) -> int { ilog_radix(*self as f64) as int }
#[inline(always)]
fn sqrt(&self) -> float { sqrt(*self) }
#[inline(always)]
fn rsqrt(&self) -> float { self.sqrt().recip() }
#[inline(always)]
fn cbrt(&self) -> float { cbrt(*self as f64) as float }
/// Converts to degrees, assuming the number is in radians
#[inline(always)]
fn to_degrees(&self) -> float { *self * (180.0 / Real::pi::<float>()) }
/// Converts to radians, assuming the number is in degrees
#[inline(always)]
fn to_radians(&self) -> float { *self * (Real::pi::<float>() / 180.0) }
#[inline(always)]
fn hypot(&self, other: float) -> float { hypot(*self as f64, other as f64) as float }
#[inline(always)]
fn sin(&self) -> float { sin(*self) }
#[inline(always)]
fn cos(&self) -> float { cos(*self) }
#[inline(always)]
fn tan(&self) -> float { tan(*self) }
#[inline(always)]
fn asin(&self) -> float { asin(*self as f64) as float }
#[inline(always)]
fn acos(&self) -> float { acos(*self as f64) as float }
#[inline(always)]
fn atan(&self) -> float { atan(*self) }
#[inline(always)]
fn atan2(&self, other: float) -> float { atan2(*self as f64, other as f64) as float }
#[inline(always)]
fn sinh(&self) -> float { sinh(*self as f64) as float }
#[inline(always)]
fn cosh(&self) -> float { cosh(*self as f64) as float }
#[inline(always)]
fn tanh(&self) -> float { tanh(*self as f64) as float }
}
impl RealExt for float {
#[inline(always)]
fn lgamma(&self) -> (int, float) {
let mut sign = 0;
let result = lgamma(*self as f64, &mut sign);
(sign as int, result as float)
}
#[inline(always)]
fn floor(&self) -> float { f64::floor(*self as f64) as float}
fn tgamma(&self) -> float { tgamma(*self as f64) as float }
#[inline(always)]
fn ceil(&self) -> float { f64::ceil(*self as f64) as float}
fn j0(&self) -> float { j0(*self as f64) as float }
#[inline(always)]
fn fract(&self) -> float {
if self.is_negative() {
(*self) - (f64::ceil(*self as f64) as float)
} else {
(*self) - (f64::floor(*self as f64) as float)
}
}
fn j1(&self) -> float { j1(*self as f64) as float }
#[inline(always)]
fn jn(&self, n: int) -> float { jn(n as c_int, *self as f64) as float }
#[inline(always)]
fn y0(&self) -> float { y0(*self as f64) as float }
#[inline(always)]
fn y1(&self) -> float { y1(*self as f64) as float }
#[inline(always)]
fn yn(&self, n: int) -> float { yn(n as c_int, *self as f64) as float }
}
#[cfg(notest)]
@ -511,11 +680,39 @@ mod tests {
use super::*;
use prelude::*;
macro_rules! assert_fuzzy_eq(
($a:expr, $b:expr) => ({
let a = $a, b = $b;
if !((a - b).abs() < 1.0e-6) {
fail!(fmt!("The values were not approximately equal. Found: %? and %?", a, b));
}
})
)
#[test]
fn test_num() {
num::test_num(10f, 2f);
}
#[test]
fn test_real_consts() {
assert_fuzzy_eq!(Real::two_pi::<float>(), 2f * Real::pi::<float>());
assert_fuzzy_eq!(Real::frac_pi_2::<float>(), Real::pi::<float>() / 2f);
assert_fuzzy_eq!(Real::frac_pi_3::<float>(), Real::pi::<float>() / 3f);
assert_fuzzy_eq!(Real::frac_pi_4::<float>(), Real::pi::<float>() / 4f);
assert_fuzzy_eq!(Real::frac_pi_6::<float>(), Real::pi::<float>() / 6f);
assert_fuzzy_eq!(Real::frac_pi_8::<float>(), Real::pi::<float>() / 8f);
assert_fuzzy_eq!(Real::frac_1_pi::<float>(), 1f / Real::pi::<float>());
assert_fuzzy_eq!(Real::frac_2_pi::<float>(), 2f / Real::pi::<float>());
assert_fuzzy_eq!(Real::frac_2_sqrtpi::<float>(), 2f / Real::pi::<float>().sqrt());
assert_fuzzy_eq!(Real::sqrt2::<float>(), 2f.sqrt());
assert_fuzzy_eq!(Real::frac_1_sqrt2::<float>(), 1f / 2f.sqrt());
assert_fuzzy_eq!(Real::log2_e::<float>(), Real::e::<float>().log2());
assert_fuzzy_eq!(Real::log10_e::<float>(), Real::e::<float>().log10());
assert_fuzzy_eq!(Real::log_2::<float>(), 2f.log());
assert_fuzzy_eq!(Real::log_10::<float>(), 10f.log());
}
#[test]
pub fn test_signed() {
assert_eq!(infinity.abs(), infinity);

View File

@ -77,19 +77,97 @@ pub trait Integer: Num
fn is_odd(&self) -> bool;
}
pub trait Round {
fn round(&self, mode: RoundMode) -> Self;
fn floor(&self) -> Self;
fn ceil(&self) -> Self;
fn fract(&self) -> Self;
pub trait Fractional: Num
+ Ord
+ Quot<Self,Self> {
fn recip(&self) -> Self;
}
pub enum RoundMode {
RoundDown,
RoundUp,
RoundToZero,
RoundFromZero
pub trait Real: Signed
+ Fractional {
// FIXME (#5527): usages of `int` should be replaced with an associated
// integer type once these are implemented
// Common Constants
// FIXME (#5527): These should be associated constants
fn pi() -> Self;
fn two_pi() -> Self;
fn frac_pi_2() -> Self;
fn frac_pi_3() -> Self;
fn frac_pi_4() -> Self;
fn frac_pi_6() -> Self;
fn frac_pi_8() -> Self;
fn frac_1_pi() -> Self;
fn frac_2_pi() -> Self;
fn frac_2_sqrtpi() -> Self;
fn sqrt2() -> Self;
fn frac_1_sqrt2() -> Self;
fn e() -> Self;
fn log2_e() -> Self;
fn log10_e() -> Self;
fn log_2() -> Self;
fn log_10() -> Self;
// Rounding operations
fn floor(&self) -> Self;
fn ceil(&self) -> Self;
fn round(&self) -> Self;
fn trunc(&self) -> Self;
fn fract(&self) -> Self;
// Exponential functions
fn pow(&self, n: Self) -> Self;
fn exp(&self) -> Self;
fn exp2(&self) -> Self;
fn expm1(&self) -> Self;
fn ldexp(&self, n: int) -> Self;
fn log(&self) -> Self;
fn log2(&self) -> Self;
fn log10(&self) -> Self;
fn log_radix(&self) -> Self;
fn ilog_radix(&self) -> int;
fn sqrt(&self) -> Self;
fn rsqrt(&self) -> Self;
fn cbrt(&self) -> Self;
// Angular conversions
fn to_degrees(&self) -> Self;
fn to_radians(&self) -> Self;
// Triganomic functions
fn hypot(&self, other: Self) -> Self;
fn sin(&self) -> Self;
fn cos(&self) -> Self;
fn tan(&self) -> Self;
// Inverse triganomic functions
fn asin(&self) -> Self;
fn acos(&self) -> Self;
fn atan(&self) -> Self;
fn atan2(&self, other: Self) -> Self;
// Hyperbolic triganomic functions
fn sinh(&self) -> Self;
fn cosh(&self) -> Self;
fn tanh(&self) -> Self;
}
/// Methods that are harder to implement and not commonly used.
pub trait RealExt: Real {
// FIXME (#5527): usages of `int` should be replaced with an associated
// integer type once these are implemented
// Gamma functions
fn lgamma(&self) -> (int, Self);
fn tgamma(&self) -> Self;
// Bessel functions
fn j0(&self) -> Self;
fn j1(&self) -> Self;
fn jn(&self, n: int) -> Self;
fn y0(&self) -> Self;
fn y1(&self) -> Self;
fn yn(&self, n: int) -> Self;
}
/**

View File

@ -39,6 +39,7 @@ pub use iter::{CopyableIter, CopyableOrderedIter, CopyableNonstrictIter};
pub use iter::{Times, ExtendedMutableIter};
pub use num::{Num, NumCast};
pub use num::{Signed, Unsigned, Integer};
pub use num::{Fractional, Real, RealExt};
pub use path::GenericPath;
pub use path::Path;
pub use path::PosixPath;