add priority queue implementation (binary heap)
This commit is contained in:
parent
6036add5eb
commit
dd2b32be56
253
src/libstd/priority_queue.rs
Normal file
253
src/libstd/priority_queue.rs
Normal file
@ -0,0 +1,253 @@
|
||||
|
||||
/// A priority queue implemented with a binary heap
|
||||
use core::cmp::Ord;
|
||||
|
||||
pub struct PriorityQueue <T: Copy Ord>{
|
||||
priv data: ~[T],
|
||||
}
|
||||
|
||||
impl <T: Copy Ord> PriorityQueue<T> {
|
||||
/// Returns the greatest item in the queue - fails if empty
|
||||
pure fn top(&self) -> T { self.data[0] }
|
||||
|
||||
/// Returns the greatest item in the queue - None if empty
|
||||
pure fn maybe_top(&self) -> Option<T> {
|
||||
if self.is_empty() { None } else { Some(self.top()) }
|
||||
}
|
||||
|
||||
/// Returns the length of the queue
|
||||
pure fn len(&self) -> uint { self.data.len() }
|
||||
|
||||
/// Returns true if a queue contains no elements
|
||||
pure fn is_empty(&self) -> bool { self.data.is_empty() }
|
||||
|
||||
/// Returns true if a queue contains some elements
|
||||
pure fn is_not_empty(&self) -> bool { self.data.is_not_empty() }
|
||||
|
||||
/// Returns the number of elements the queue can hold without reallocating
|
||||
pure fn capacity(&self) -> uint { vec::capacity(&self.data) }
|
||||
|
||||
fn reserve(&mut self, n: uint) { vec::reserve(&mut self.data, n) }
|
||||
|
||||
fn reserve_at_least(&mut self, n: uint) {
|
||||
vec::reserve_at_least(&mut self.data, n)
|
||||
}
|
||||
|
||||
/// Drop all items from the queue
|
||||
fn clear(&mut self) { self.data.truncate(0) }
|
||||
|
||||
/// Pop the greatest item from the queue - fails if empty
|
||||
fn pop(&mut self) -> T {
|
||||
let last = self.data.pop();
|
||||
if self.is_not_empty() {
|
||||
let ret = self.data[0];
|
||||
self.data[0] = last;
|
||||
self.siftup(0);
|
||||
ret
|
||||
} else { last }
|
||||
}
|
||||
|
||||
/// Pop the greatest item from the queue - None if empty
|
||||
fn maybe_pop(&mut self) -> Option<T> {
|
||||
if self.is_empty() { None } else { Some(self.pop()) }
|
||||
}
|
||||
|
||||
/// Push an item onto the queue
|
||||
fn push(&mut self, item: T) {
|
||||
self.data.push(item);
|
||||
self.siftdown(0, self.len() - 1);
|
||||
}
|
||||
|
||||
/// Optimized version of a push followed by a pop
|
||||
fn push_pop(&mut self, item: T) -> T {
|
||||
let mut item = item;
|
||||
if self.is_not_empty() && self.data[0] > item {
|
||||
item <-> self.data[0];
|
||||
self.siftup(0);
|
||||
}
|
||||
item
|
||||
}
|
||||
|
||||
/// Optimized version of a pop followed by a push - fails if empty
|
||||
fn replace(&mut self, item: T) -> T {
|
||||
let ret = self.data[0];
|
||||
self.data[0] = item;
|
||||
self.siftup(0);
|
||||
ret
|
||||
}
|
||||
|
||||
priv fn siftdown(&mut self, startpos: uint, pos: uint) {
|
||||
let mut pos = pos;
|
||||
let newitem = self.data[pos];
|
||||
|
||||
while pos > startpos {
|
||||
let parentpos = (pos - 1) >> 1;
|
||||
let parent = self.data[parentpos];
|
||||
if newitem > parent {
|
||||
self.data[pos] = parent;
|
||||
pos = parentpos;
|
||||
loop
|
||||
}
|
||||
break
|
||||
}
|
||||
self.data[pos] = newitem;
|
||||
}
|
||||
|
||||
priv fn siftup_range(&mut self, pos: uint, endpos: uint) {
|
||||
let mut pos = pos;
|
||||
let startpos = pos;
|
||||
let newitem = self.data[pos];
|
||||
|
||||
let mut childpos = 2 * pos + 1;
|
||||
while childpos < endpos {
|
||||
let rightpos = childpos + 1;
|
||||
if rightpos < endpos &&
|
||||
!(self.data[childpos] > self.data[rightpos]) {
|
||||
childpos = rightpos;
|
||||
}
|
||||
self.data[pos] = self.data[childpos];
|
||||
pos = childpos;
|
||||
childpos = 2 * pos + 1;
|
||||
}
|
||||
self.data[pos] = newitem;
|
||||
self.siftdown(startpos, pos);
|
||||
}
|
||||
|
||||
priv fn siftup(&mut self, pos: uint) {
|
||||
self.siftup_range(pos, self.len());
|
||||
}
|
||||
}
|
||||
|
||||
/// Consume the PriorityQueue and return the underlying vector
|
||||
pub pure fn to_vec<T: Copy Ord>(q: PriorityQueue<T>) -> ~[T] {
|
||||
let PriorityQueue{data: v} = q;
|
||||
v
|
||||
}
|
||||
|
||||
/// Consume the PriorityQueue and return a vector in sorted (ascending) order
|
||||
pub pure fn to_sorted_vec<T: Copy Ord>(q: PriorityQueue<T>) -> ~[T] {
|
||||
let mut q = q;
|
||||
let mut end = q.len() - 1;
|
||||
while end > 0 {
|
||||
q.data[end] <-> q.data[0];
|
||||
end -= 1;
|
||||
unsafe { q.siftup_range(0, end) } // purity-checking workaround
|
||||
}
|
||||
to_vec(q)
|
||||
}
|
||||
|
||||
pub pure fn from_vec<T: Copy Ord>(xs: ~[T]) -> PriorityQueue<T> {
|
||||
let mut q = PriorityQueue{data: xs,};
|
||||
let mut n = q.len() / 2;
|
||||
while n > 0 {
|
||||
n -= 1;
|
||||
unsafe { q.siftup(n) }; // purity-checking workaround
|
||||
}
|
||||
q
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use sort::merge_sort;
|
||||
use core::cmp::le;
|
||||
|
||||
#[test]
|
||||
fn test_top_and_pop() {
|
||||
let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
|
||||
let mut sorted = merge_sort(data, le);
|
||||
let mut heap = from_vec(data);
|
||||
while heap.is_not_empty() {
|
||||
assert heap.top() == sorted.last();
|
||||
assert heap.pop() == sorted.pop();
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_push() {
|
||||
let mut heap = from_vec(~[2, 4, 9]);
|
||||
assert heap.len() == 3;
|
||||
assert heap.top() == 9;
|
||||
heap.push(11);
|
||||
assert heap.len() == 4;
|
||||
assert heap.top() == 11;
|
||||
heap.push(5);
|
||||
assert heap.len() == 5;
|
||||
assert heap.top() == 11;
|
||||
heap.push(27);
|
||||
assert heap.len() == 6;
|
||||
assert heap.top() == 27;
|
||||
heap.push(3);
|
||||
assert heap.len() == 7;
|
||||
assert heap.top() == 27;
|
||||
heap.push(103);
|
||||
assert heap.len() == 8;
|
||||
assert heap.top() == 103;
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_push_pop() {
|
||||
let mut heap = from_vec(~[5, 5, 2, 1, 3]);
|
||||
assert heap.len() == 5;
|
||||
assert heap.push_pop(6) == 6;
|
||||
assert heap.len() == 5;
|
||||
assert heap.push_pop(0) == 5;
|
||||
assert heap.len() == 5;
|
||||
assert heap.push_pop(4) == 5;
|
||||
assert heap.len() == 5;
|
||||
assert heap.push_pop(1) == 4;
|
||||
assert heap.len() == 5;
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_replace() {
|
||||
let mut heap = from_vec(~[5, 5, 2, 1, 3]);
|
||||
assert heap.len() == 5;
|
||||
assert heap.replace(6) == 5;
|
||||
assert heap.len() == 5;
|
||||
assert heap.replace(0) == 6;
|
||||
assert heap.len() == 5;
|
||||
assert heap.replace(4) == 5;
|
||||
assert heap.len() == 5;
|
||||
assert heap.replace(1) == 4;
|
||||
assert heap.len() == 5;
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_sorted_vec() {
|
||||
let data = ~[2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
|
||||
assert to_sorted_vec(from_vec(data)) == merge_sort(data, le);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_empty_pop() { let mut heap = from_vec::<int>(~[]); heap.pop(); }
|
||||
|
||||
#[test]
|
||||
fn test_empty_maybe_pop() {
|
||||
let mut heap = from_vec::<int>(~[]);
|
||||
assert heap.maybe_pop().is_none();
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_empty_top() { from_vec::<int>(~[]).top(); }
|
||||
|
||||
#[test]
|
||||
fn test_empty_maybe_top() {
|
||||
assert from_vec::<int>(~[]).maybe_top().is_none();
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_empty_replace() {
|
||||
let mut heap = from_vec::<int>(~[]);
|
||||
heap.replace(5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_vec() {
|
||||
let data = ~[1, 3, 5, 7, 9, 2, 4, 6, 8, 0];
|
||||
let heap = from_vec(copy data);
|
||||
assert merge_sort(to_vec(heap), le) == merge_sort(data, le);
|
||||
}
|
||||
}
|
@ -73,6 +73,7 @@ pub mod deque;
|
||||
pub mod fun_treemap;
|
||||
pub mod list;
|
||||
pub mod map;
|
||||
pub mod priority_queue;
|
||||
pub mod rope;
|
||||
pub mod smallintmap;
|
||||
pub mod sort;
|
||||
|
Loading…
Reference in New Issue
Block a user