Lint expressions of the form x.log(b) / y.log(b)
This commit is contained in:
parent
9520d3dfa4
commit
de79733924
@ -64,29 +64,31 @@ declare_clippy_lint! {
|
||||
|
||||
declare_lint_pass!(FloatingPointArithmetic => [FLOATING_POINT_IMPROVEMENTS]);
|
||||
|
||||
fn check_log_base(cx: &LateContext<'_, '_>, expr: &Expr, args: &HirVec<Expr>) {
|
||||
let arg = sugg::Sugg::hir(cx, &args[0], "..").maybe_par();
|
||||
|
||||
if let Some((value, _)) = constant(cx, cx.tables, &args[1]) {
|
||||
let method;
|
||||
|
||||
// Returns the specialized log method for a given base if base is constant
|
||||
// and is one of 2, 10 and e
|
||||
fn get_specialized_log_method(cx: &LateContext<'_, '_>, base: &Expr) -> Option<&'static str> {
|
||||
if let Some((value, _)) = constant(cx, cx.tables, base) {
|
||||
if F32(2.0) == value || F64(2.0) == value {
|
||||
method = "log2";
|
||||
return Some("log2");
|
||||
} else if F32(10.0) == value || F64(10.0) == value {
|
||||
method = "log10";
|
||||
return Some("log10");
|
||||
} else if F32(f32_consts::E) == value || F64(f64_consts::E) == value {
|
||||
method = "ln";
|
||||
} else {
|
||||
return;
|
||||
return Some("ln");
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
fn check_log_base(cx: &LateContext<'_, '_>, expr: &Expr, args: &HirVec<Expr>) {
|
||||
if let Some(method) = get_specialized_log_method(cx, &args[1]) {
|
||||
span_lint_and_sugg(
|
||||
cx,
|
||||
FLOATING_POINT_IMPROVEMENTS,
|
||||
expr.span,
|
||||
"logarithm for bases 2, 10 and e can be computed more accurately",
|
||||
"consider using",
|
||||
format!("{}.{}()", arg, method),
|
||||
format!("{}.{}()", sugg::Sugg::hir(cx, &args[0], ".."), method),
|
||||
Applicability::MachineApplicable,
|
||||
);
|
||||
}
|
||||
@ -232,6 +234,82 @@ fn check_expm1(cx: &LateContext<'_, '_>, expr: &Expr) {
|
||||
}
|
||||
}
|
||||
|
||||
// Checks whether two expressions evaluate to the same value
|
||||
fn are_exprs_equivalent(cx: &LateContext<'_, '_>, left: &Expr, right: &Expr) -> bool {
|
||||
// Checks whether the values are constant and equal
|
||||
if_chain! {
|
||||
if let Some((left_value, _)) = constant(cx, cx.tables, left);
|
||||
if let Some((right_value, _)) = constant(cx, cx.tables, right);
|
||||
if left_value == right_value;
|
||||
then {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// Checks whether the expressions resolve to the same variable
|
||||
if_chain! {
|
||||
if let ExprKind::Path(ref left_qpath) = left.kind;
|
||||
if let QPath::Resolved(_, ref left_path) = *left_qpath;
|
||||
if left_path.segments.len() == 1;
|
||||
if let def::Res::Local(left_local_id) = qpath_res(cx, left_qpath, left.hir_id);
|
||||
if let ExprKind::Path(ref right_qpath) = right.kind;
|
||||
if let QPath::Resolved(_, ref right_path) = *right_qpath;
|
||||
if right_path.segments.len() == 1;
|
||||
if let def::Res::Local(right_local_id) = qpath_res(cx, right_qpath, right.hir_id);
|
||||
if left_local_id == right_local_id;
|
||||
then {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
|
||||
fn check_log_division(cx: &LateContext<'_, '_>, expr: &Expr) {
|
||||
let log_methods = ["log", "log2", "log10", "ln"];
|
||||
|
||||
if_chain! {
|
||||
if let ExprKind::Binary(op, ref lhs, ref rhs) = expr.kind;
|
||||
if op.node == BinOpKind::Div;
|
||||
if cx.tables.expr_ty(lhs).is_floating_point();
|
||||
if let ExprKind::MethodCall(left_path, _, left_args) = &lhs.kind;
|
||||
if let ExprKind::MethodCall(right_path, _, right_args) = &rhs.kind;
|
||||
let left_method = left_path.ident.name.as_str();
|
||||
if left_method == right_path.ident.name.as_str();
|
||||
if log_methods.iter().any(|&method| left_method == method);
|
||||
then {
|
||||
let left_recv = &left_args[0];
|
||||
let right_recv = &right_args[0];
|
||||
|
||||
// Return early when bases are not equal
|
||||
if left_method == "log" && !are_exprs_equivalent(cx, &left_args[1], &right_args[1]) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Reduce the expression further for bases 2, 10 and e
|
||||
let suggestion = if let Some(method) = get_specialized_log_method(cx, right_recv) {
|
||||
format!("{}.{}()", sugg::Sugg::hir(cx, left_recv, ".."), method)
|
||||
} else {
|
||||
format!(
|
||||
"{}.log({})",
|
||||
sugg::Sugg::hir(cx, left_recv, ".."),
|
||||
sugg::Sugg::hir(cx, right_recv, "..")
|
||||
)
|
||||
};
|
||||
|
||||
span_lint_and_sugg(
|
||||
cx,
|
||||
FLOATING_POINT_IMPROVEMENTS,
|
||||
expr.span,
|
||||
"x.log(b) / y.log(b) can be reduced to x.log(y)",
|
||||
"consider using",
|
||||
suggestion,
|
||||
Applicability::MachineApplicable,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for FloatingPointArithmetic {
|
||||
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
|
||||
if let ExprKind::MethodCall(ref path, _, args) = &expr.kind {
|
||||
@ -247,6 +325,7 @@ impl<'a, 'tcx> LateLintPass<'a, 'tcx> for FloatingPointArithmetic {
|
||||
}
|
||||
} else {
|
||||
check_expm1(cx, expr);
|
||||
check_log_division(cx, expr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -82,4 +82,30 @@ fn check_expm1() {
|
||||
let _ = x.exp() - 1.0 * 2.0;
|
||||
}
|
||||
|
||||
fn check_log_division() {
|
||||
let x = 3f32;
|
||||
let y = 2f32;
|
||||
let b = 4f32;
|
||||
|
||||
let _ = x.log2() / y.log2();
|
||||
let _ = x.log10() / y.log10();
|
||||
let _ = x.ln() / y.ln();
|
||||
let _ = x.log(4.0) / y.log(4.0);
|
||||
let _ = x.log(b) / y.log(b);
|
||||
let _ = x.log(b) / y.log(x);
|
||||
let _ = x.log(b) / 2f32.log(b);
|
||||
|
||||
let x = 3f64;
|
||||
let y = 2f64;
|
||||
let b = 4f64;
|
||||
|
||||
let _ = x.log2() / y.log2();
|
||||
let _ = x.log10() / y.log10();
|
||||
let _ = x.ln() / y.ln();
|
||||
let _ = x.log(4.0) / y.log(4.0);
|
||||
let _ = x.log(b) / y.log(b);
|
||||
let _ = x.log(b) / y.log(x);
|
||||
let _ = x.log(b) / 2f64.log(b);
|
||||
}
|
||||
|
||||
fn main() {}
|
||||
|
@ -192,5 +192,77 @@ error: (e.pow(x) - 1) can be computed more accurately
|
||||
LL | let _ = x.exp() - 1.0 + 2.0;
|
||||
| ^^^^^^^^^^^^^ help: consider using: `x.exp_m1()`
|
||||
|
||||
error: aborting due to 32 previous errors
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:90:13
|
||||
|
|
||||
LL | let _ = x.log2() / y.log2();
|
||||
| ^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:91:13
|
||||
|
|
||||
LL | let _ = x.log10() / y.log10();
|
||||
| ^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:92:13
|
||||
|
|
||||
LL | let _ = x.ln() / y.ln();
|
||||
| ^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:93:13
|
||||
|
|
||||
LL | let _ = x.log(4.0) / y.log(4.0);
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:94:13
|
||||
|
|
||||
LL | let _ = x.log(b) / y.log(b);
|
||||
| ^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:96:13
|
||||
|
|
||||
LL | let _ = x.log(b) / 2f32.log(b);
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log2()`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:102:13
|
||||
|
|
||||
LL | let _ = x.log2() / y.log2();
|
||||
| ^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:103:13
|
||||
|
|
||||
LL | let _ = x.log10() / y.log10();
|
||||
| ^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:104:13
|
||||
|
|
||||
LL | let _ = x.ln() / y.ln();
|
||||
| ^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:105:13
|
||||
|
|
||||
LL | let _ = x.log(4.0) / y.log(4.0);
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:106:13
|
||||
|
|
||||
LL | let _ = x.log(b) / y.log(b);
|
||||
| ^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log(y)`
|
||||
|
||||
error: x.log(b) / y.log(b) can be reduced to x.log(y)
|
||||
--> $DIR/floating_point_arithmetic.rs:108:13
|
||||
|
|
||||
LL | let _ = x.log(b) / 2f64.log(b);
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^ help: consider using: `x.log2()`
|
||||
|
||||
error: aborting due to 44 previous errors
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user