Rollup merge of #78072 - Nadrieril:cleanup-constant-matching, r=varkor

Cleanup constant matching in exhaustiveness checking

This supercedes https://github.com/rust-lang/rust/pull/77390. I made the `Opaque` constructor work.
I have opened two issues https://github.com/rust-lang/rust/issues/78071 and https://github.com/rust-lang/rust/issues/78057 from the discussion we had on the previous PR. They are not regressions nor directly related to the current PR so I thought we'd deal with them separately.

I left a FIXME somewhere because I didn't know how to compare string constants for equality. There might even be some unicode things that need to happen there. In the meantime I preserved previous behavior.

EDIT: I accidentally fixed #78071
This commit is contained in:
Jonas Schievink 2020-10-24 22:39:51 +02:00 committed by GitHub
commit e12e97223f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 448 additions and 347 deletions

View File

@ -302,10 +302,9 @@ use super::{FieldPat, Pat, PatKind, PatRange};
use rustc_arena::TypedArena;
use rustc_attr::{SignedInt, UnsignedInt};
use rustc_errors::ErrorReported;
use rustc_hir::def_id::DefId;
use rustc_hir::{HirId, RangeEnd};
use rustc_middle::mir::interpret::{truncate, AllocId, ConstValue, Pointer, Scalar};
use rustc_middle::mir::interpret::{truncate, ConstValue};
use rustc_middle::mir::Field;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, Const, Ty, TyCtxt};
@ -314,108 +313,21 @@ use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{Integer, Size, VariantIdx};
use smallvec::{smallvec, SmallVec};
use std::borrow::Cow;
use std::cmp::{self, max, min, Ordering};
use std::convert::TryInto;
use std::fmt;
use std::iter::{FromIterator, IntoIterator};
use std::ops::RangeInclusive;
crate fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pat<'tcx>) -> Pat<'tcx> {
LiteralExpander { tcx: cx.tcx, param_env: cx.param_env }.fold_pattern(&pat)
crate fn expand_pattern<'tcx>(pat: Pat<'tcx>) -> Pat<'tcx> {
LiteralExpander.fold_pattern(&pat)
}
struct LiteralExpander<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}
struct LiteralExpander;
impl<'tcx> LiteralExpander<'tcx> {
/// Derefs `val` and potentially unsizes the value if `crty` is an array and `rty` a slice.
///
/// `crty` and `rty` can differ because you can use array constants in the presence of slice
/// patterns. So the pattern may end up being a slice, but the constant is an array. We convert
/// the array to a slice in that case.
fn fold_const_value_deref(
&mut self,
val: ConstValue<'tcx>,
// the pattern's pointee type
rty: Ty<'tcx>,
// the constant's pointee type
crty: Ty<'tcx>,
) -> ConstValue<'tcx> {
debug!("fold_const_value_deref {:?} {:?} {:?}", val, rty, crty);
match (val, &crty.kind(), &rty.kind()) {
// the easy case, deref a reference
(ConstValue::Scalar(p), x, y) if x == y => {
match p {
Scalar::Ptr(p) => {
let alloc = self.tcx.global_alloc(p.alloc_id).unwrap_memory();
ConstValue::ByRef { alloc, offset: p.offset }
}
Scalar::Raw { .. } => {
let layout = self.tcx.layout_of(self.param_env.and(rty)).unwrap();
if layout.is_zst() {
// Deref of a reference to a ZST is a nop.
ConstValue::Scalar(Scalar::zst())
} else {
// FIXME(oli-obk): this is reachable for `const FOO: &&&u32 = &&&42;`
bug!("cannot deref {:#?}, {} -> {}", val, crty, rty);
}
}
}
}
// unsize array to slice if pattern is array but match value or other patterns are slice
(ConstValue::Scalar(Scalar::Ptr(p)), ty::Array(t, n), ty::Slice(u)) => {
assert_eq!(t, u);
ConstValue::Slice {
data: self.tcx.global_alloc(p.alloc_id).unwrap_memory(),
start: p.offset.bytes().try_into().unwrap(),
end: n.eval_usize(self.tcx, ty::ParamEnv::empty()).try_into().unwrap(),
}
}
// fat pointers stay the same
(ConstValue::Slice { .. }, _, _)
| (_, ty::Slice(_), ty::Slice(_))
| (_, ty::Str, ty::Str) => val,
// FIXME(oli-obk): this is reachable for `const FOO: &&&u32 = &&&42;` being used
_ => bug!("cannot deref {:#?}, {} -> {}", val, crty, rty),
}
}
}
impl<'tcx> PatternFolder<'tcx> for LiteralExpander<'tcx> {
impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
fn fold_pattern(&mut self, pat: &Pat<'tcx>) -> Pat<'tcx> {
debug!("fold_pattern {:?} {:?} {:?}", pat, pat.ty.kind(), pat.kind);
match (pat.ty.kind(), &*pat.kind) {
(&ty::Ref(_, rty, _), &PatKind::Constant { value: Const { val, ty: const_ty } })
if const_ty.is_ref() =>
{
let crty =
if let ty::Ref(_, crty, _) = const_ty.kind() { crty } else { unreachable!() };
if let ty::ConstKind::Value(val) = val {
Pat {
ty: pat.ty,
span: pat.span,
kind: box PatKind::Deref {
subpattern: Pat {
ty: rty,
span: pat.span,
kind: box PatKind::Constant {
value: Const::from_value(
self.tcx,
self.fold_const_value_deref(*val, rty, crty),
rty,
),
},
},
},
}
} else {
bug!("cannot deref {:#?}, {} -> {}", val, crty, rty)
}
}
(_, &PatKind::Binding { subpattern: Some(ref s), .. }) => s.fold_with(self),
(_, &PatKind::AscribeUserType { subpattern: ref s, .. }) => s.fold_with(self),
_ => pat.super_fold_with(self),
@ -500,9 +412,15 @@ impl<'p, 'tcx> PatStack<'p, 'tcx> {
cx: &mut MatchCheckCtxt<'p, 'tcx>,
constructor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
is_my_head_ctor: bool,
) -> Option<PatStack<'p, 'tcx>> {
let new_fields =
specialize_one_pattern(cx, self.head(), constructor, ctor_wild_subpatterns)?;
let new_fields = specialize_one_pattern(
cx,
self.head(),
constructor,
ctor_wild_subpatterns,
is_my_head_ctor,
)?;
Some(new_fields.push_on_patstack(&self.0[1..]))
}
}
@ -680,6 +598,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
cx,
constructor,
ctor_wild_subpatterns,
false,
)
})
.collect()
@ -705,7 +624,9 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
SpecializationCache::Incompatible => self
.patterns
.iter()
.filter_map(|r| r.specialize_constructor(cx, constructor, ctor_wild_subpatterns))
.filter_map(|r| {
r.specialize_constructor(cx, constructor, ctor_wild_subpatterns, false)
})
.collect(),
}
}
@ -725,6 +646,7 @@ impl<'p, 'tcx> Matrix<'p, 'tcx> {
/// +++++++++++++++++++++++++++++
/// + _ + [_, _, tail @ ..] +
/// +++++++++++++++++++++++++++++
/// ```
impl<'p, 'tcx> fmt::Debug for Matrix<'p, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
@ -926,42 +848,30 @@ enum Constructor<'tcx> {
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(&'tcx ty::Const<'tcx>),
/// Ranges of integer literal values (`2`, `2..=5` or `2..5`).
IntRange(IntRange<'tcx>),
/// Ranges of floating-point literal values (`2.0..=5.2`).
FloatRange(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>, RangeEnd),
/// String literals. Strings are not quite the same as `&[u8]` so we treat them separately.
Str(&'tcx ty::Const<'tcx>),
/// Array and slice patterns.
Slice(Slice),
/// Constants that must not be matched structurally. They are treated as black
/// boxes for the purposes of exhaustiveness: we must not inspect them, and they
/// don't count towards making a match exhaustive.
Opaque,
/// Fake extra constructor for enums that aren't allowed to be matched exhaustively.
NonExhaustive,
}
impl<'tcx> Constructor<'tcx> {
fn is_slice(&self) -> bool {
match self {
Slice(_) => true,
_ => false,
}
}
fn variant_index_for_adt<'a>(
&self,
cx: &MatchCheckCtxt<'a, 'tcx>,
adt: &'tcx ty::AdtDef,
) -> VariantIdx {
fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> VariantIdx {
match *self {
Variant(id) => adt.variant_index_with_id(id),
Single => {
assert!(!adt.is_enum());
VariantIdx::new(0)
}
ConstantValue(c) => cx
.tcx
.destructure_const(cx.param_env.and(c))
.variant
.expect("destructed const of adt without variant id"),
_ => bug!("bad constructor {:?} for adt {:?}", self, adt),
}
}
@ -975,7 +885,7 @@ impl<'tcx> Constructor<'tcx> {
match self {
// Those constructors can only match themselves.
Single | Variant(_) | ConstantValue(..) | FloatRange(..) => {
Single | Variant(_) | Str(..) | FloatRange(..) => {
if other_ctors.iter().any(|c| c == self) { vec![] } else { vec![self.clone()] }
}
&Slice(slice) => {
@ -983,8 +893,6 @@ impl<'tcx> Constructor<'tcx> {
.iter()
.filter_map(|c: &Constructor<'_>| match c {
Slice(slice) => Some(*slice),
// FIXME(oli-obk): implement `deref` for `ConstValue`
ConstantValue(..) => None,
_ => bug!("bad slice pattern constructor {:?}", c),
})
.map(Slice::value_kind);
@ -1048,6 +956,7 @@ impl<'tcx> Constructor<'tcx> {
}
// This constructor is never covered by anything else
NonExhaustive => vec![NonExhaustive],
Opaque => bug!("unexpected opaque ctor {:?} found in all_ctors", self),
}
}
@ -1087,7 +996,7 @@ impl<'tcx> Constructor<'tcx> {
PatKind::Variant {
adt_def: adt,
substs,
variant_index: self.variant_index_for_adt(cx, adt),
variant_index: self.variant_index_for_adt(adt),
subpatterns,
}
} else {
@ -1126,10 +1035,11 @@ impl<'tcx> Constructor<'tcx> {
PatKind::Slice { prefix, slice: Some(wild), suffix }
}
},
&ConstantValue(value) => PatKind::Constant { value },
&Str(value) => PatKind::Constant { value },
&FloatRange(lo, hi, end) => PatKind::Range(PatRange { lo, hi, end }),
IntRange(range) => return range.to_pat(cx.tcx),
NonExhaustive => PatKind::Wild,
Opaque => bug!("we should not try to apply an opaque constructor {:?}", self),
};
Pat { ty, span: DUMMY_SP, kind: Box::new(pat) }
@ -1204,12 +1114,6 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
Fields::Slice(std::slice::from_ref(pat))
}
/// Construct a new `Fields` from the given patterns. You must be sure those patterns can't
/// contain fields that need to be filtered out. When in doubt, prefer `replace_fields`.
fn from_slice_unfiltered(pats: &'p [Pat<'tcx>]) -> Self {
Fields::Slice(pats)
}
/// Convenience; internal use.
fn wildcards_from_tys(
cx: &MatchCheckCtxt<'p, 'tcx>,
@ -1239,7 +1143,7 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
// Use T as the sub pattern type of Box<T>.
Fields::from_single_pattern(wildcard_from_ty(substs.type_at(0)))
} else {
let variant = &adt.variants[constructor.variant_index_for_adt(cx, adt)];
let variant = &adt.variants[constructor.variant_index_for_adt(adt)];
// Whether we must not match the fields of this variant exhaustively.
let is_non_exhaustive =
variant.is_field_list_non_exhaustive() && !adt.did.is_local();
@ -1287,7 +1191,7 @@ impl<'p, 'tcx> Fields<'p, 'tcx> {
}
_ => bug!("bad slice pattern {:?} {:?}", constructor, ty),
},
ConstantValue(..) | FloatRange(..) | IntRange(..) | NonExhaustive => Fields::empty(),
Str(..) | FloatRange(..) | IntRange(..) | NonExhaustive | Opaque => Fields::empty(),
};
debug!("Fields::wildcards({:?}, {:?}) = {:#?}", constructor, ty, ret);
ret
@ -1600,9 +1504,7 @@ fn all_constructors<'a, 'tcx>(
)
};
match *pcx.ty.kind() {
ty::Bool => {
[true, false].iter().map(|&b| ConstantValue(ty::Const::from_bool(cx.tcx, b))).collect()
}
ty::Bool => vec![make_range(0, 1)],
ty::Array(ref sub_ty, len) if len.try_eval_usize(cx.tcx, cx.param_env).is_some() => {
let len = len.eval_usize(cx.tcx, cx.param_env);
if len != 0 && cx.is_uninhabited(sub_ty) {
@ -1717,7 +1619,7 @@ impl<'tcx> IntRange<'tcx> {
#[inline]
fn is_integral(ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Char | ty::Int(_) | ty::Uint(_) => true,
ty::Char | ty::Int(_) | ty::Uint(_) | ty::Bool => true,
_ => false,
}
}
@ -1739,6 +1641,7 @@ impl<'tcx> IntRange<'tcx> {
#[inline]
fn integral_size_and_signed_bias(tcx: TyCtxt<'tcx>, ty: Ty<'_>) -> Option<(Size, u128)> {
match *ty.kind() {
ty::Bool => Some((Size::from_bytes(1), 0)),
ty::Char => Some((Size::from_bytes(4), 0)),
ty::Int(ity) => {
let size = Integer::from_attr(&tcx, SignedInt(ity)).size();
@ -2230,7 +2133,7 @@ fn is_useful_specialized<'p, 'tcx>(
// We cache the result of `Fields::wildcards` because it is used a lot.
let ctor_wild_subpatterns = Fields::wildcards(cx, &ctor, ty);
let matrix = matrix.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns);
v.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns)
v.specialize_constructor(cx, &ctor, &ctor_wild_subpatterns, true)
.map(|v| is_useful(cx, &matrix, &v, witness_preference, hir_id, is_under_guard, false))
.map(|u| u.apply_constructor(cx, &ctor, ty, &ctor_wild_subpatterns))
.unwrap_or(NotUseful)
@ -2255,18 +2158,13 @@ fn pat_constructor<'tcx>(
if let Some(int_range) = IntRange::from_const(tcx, param_env, value, pat.span) {
Some(IntRange(int_range))
} else {
match (value.val, &value.ty.kind()) {
(_, ty::Array(_, n)) => {
let len = n.eval_usize(tcx, param_env);
Some(Slice(Slice { array_len: Some(len), kind: FixedLen(len) }))
}
(ty::ConstKind::Value(ConstValue::Slice { start, end, .. }), ty::Slice(_)) => {
let len = (end - start) as u64;
Some(Slice(Slice { array_len: None, kind: FixedLen(len) }))
}
// FIXME(oli-obk): implement `deref` for `ConstValue`
// (ty::ConstKind::Value(ConstValue::ByRef { .. }), ty::Slice(_)) => { ... }
_ => Some(ConstantValue(value)),
match value.ty.kind() {
ty::Float(_) => Some(FloatRange(value, value, RangeEnd::Included)),
ty::Ref(_, t, _) if t.is_str() => Some(Str(value)),
// All constants that can be structurally matched have already been expanded
// into the corresponding `Pat`s by `const_to_pat`. Constants that remain are
// opaque.
_ => Some(Opaque),
}
}
}
@ -2302,75 +2200,6 @@ fn pat_constructor<'tcx>(
}
}
// checks whether a constant is equal to a user-written slice pattern. Only supports byte slices,
// meaning all other types will compare unequal and thus equal patterns often do not cause the
// second pattern to lint about unreachable match arms.
fn slice_pat_covered_by_const<'tcx>(
tcx: TyCtxt<'tcx>,
_span: Span,
const_val: &'tcx ty::Const<'tcx>,
prefix: &[Pat<'tcx>],
slice: &Option<Pat<'tcx>>,
suffix: &[Pat<'tcx>],
param_env: ty::ParamEnv<'tcx>,
) -> Result<bool, ErrorReported> {
let const_val_val = if let ty::ConstKind::Value(val) = const_val.val {
val
} else {
bug!(
"slice_pat_covered_by_const: {:#?}, {:#?}, {:#?}, {:#?}",
const_val,
prefix,
slice,
suffix,
)
};
let data: &[u8] = match (const_val_val, &const_val.ty.kind()) {
(ConstValue::ByRef { offset, alloc, .. }, ty::Array(t, n)) => {
assert_eq!(*t, tcx.types.u8);
let n = n.eval_usize(tcx, param_env);
let ptr = Pointer::new(AllocId(0), offset);
alloc.get_bytes(&tcx, ptr, Size::from_bytes(n)).unwrap()
}
(ConstValue::Slice { data, start, end }, ty::Slice(t)) => {
assert_eq!(*t, tcx.types.u8);
let ptr = Pointer::new(AllocId(0), Size::from_bytes(start));
data.get_bytes(&tcx, ptr, Size::from_bytes(end - start)).unwrap()
}
// FIXME(oli-obk): create a way to extract fat pointers from ByRef
(_, ty::Slice(_)) => return Ok(false),
_ => bug!(
"slice_pat_covered_by_const: {:#?}, {:#?}, {:#?}, {:#?}",
const_val,
prefix,
slice,
suffix,
),
};
let pat_len = prefix.len() + suffix.len();
if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
return Ok(false);
}
for (ch, pat) in data[..prefix.len()]
.iter()
.zip(prefix)
.chain(data[data.len() - suffix.len()..].iter().zip(suffix))
{
if let box PatKind::Constant { value } = pat.kind {
let b = value.eval_bits(tcx, param_env, pat.ty);
assert_eq!(b as u8 as u128, b);
if b as u8 != *ch {
return Ok(false);
}
}
}
Ok(true)
}
/// For exhaustive integer matching, some constructors are grouped within other constructors
/// (namely integer typed values are grouped within ranges). However, when specialising these
/// constructors, we want to be specialising for the underlying constructors (the integers), not
@ -2668,35 +2497,6 @@ fn lint_overlapping_patterns<'tcx>(
}
}
fn constructor_covered_by_range<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
ctor: &Constructor<'tcx>,
pat: &Pat<'tcx>,
) -> Option<()> {
if let Single = ctor {
return Some(());
}
let (pat_from, pat_to, pat_end, ty) = match *pat.kind {
PatKind::Constant { value } => (value, value, RangeEnd::Included, value.ty),
PatKind::Range(PatRange { lo, hi, end }) => (lo, hi, end, lo.ty),
_ => bug!("`constructor_covered_by_range` called with {:?}", pat),
};
let (ctor_from, ctor_to, ctor_end) = match *ctor {
ConstantValue(value) => (value, value, RangeEnd::Included),
FloatRange(from, to, ctor_end) => (from, to, ctor_end),
_ => bug!("`constructor_covered_by_range` called with {:?}", ctor),
};
trace!("constructor_covered_by_range {:#?}, {:#?}, {:#?}, {}", ctor, pat_from, pat_to, ty);
let to = compare_const_vals(tcx, ctor_to, pat_to, param_env, ty)?;
let from = compare_const_vals(tcx, ctor_from, pat_from, param_env, ty)?;
let intersects = (from == Ordering::Greater || from == Ordering::Equal)
&& (to == Ordering::Less || (pat_end == ctor_end && to == Ordering::Equal));
if intersects { Some(()) } else { None }
}
/// This is the main specialization step. It expands the pattern
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
@ -2713,15 +2513,43 @@ fn specialize_one_pattern<'p, 'tcx>(
pat: &'p Pat<'tcx>,
constructor: &Constructor<'tcx>,
ctor_wild_subpatterns: &Fields<'p, 'tcx>,
is_its_own_ctor: bool, // Whether `ctor` is known to be derived from `pat`
) -> Option<Fields<'p, 'tcx>> {
if let NonExhaustive = constructor {
// Only a wildcard pattern can match the special extra constructor
// Only a wildcard pattern can match the special extra constructor.
if !pat.is_wildcard() {
return None;
}
return Some(Fields::empty());
}
if let Opaque = constructor {
// Only a wildcard pattern can match an opaque constant, unless we're specializing the
// value against its own constructor. That happens when we call
// `v.specialize_constructor(ctor)` with `ctor` obtained from `pat_constructor(v.head())`.
// For example, in the following match, when we are dealing with the third branch, we will
// specialize with an `Opaque` ctor. We want to ignore the second branch because opaque
// constants should not be inspected, but we don't want to ignore the current (third)
// branch, as that would cause us to always conclude that such a branch is unreachable.
// ```rust
// #[derive(PartialEq)]
// struct Foo(i32);
// impl Eq for Foo {}
// const FOO: Foo = Foo(42);
//
// match (Foo(0), true) {
// (_, true) => {}
// (FOO, true) => {}
// (FOO, false) => {}
// }
// ```
if is_its_own_ctor || pat.is_wildcard() {
return Some(Fields::empty());
} else {
return None;
}
}
let result = match *pat.kind {
PatKind::AscribeUserType { .. } => bug!(), // Handled by `expand_pattern`
@ -2741,93 +2569,52 @@ fn specialize_one_pattern<'p, 'tcx>(
PatKind::Deref { ref subpattern } => Some(Fields::from_single_pattern(subpattern)),
PatKind::Constant { value } if constructor.is_slice() => {
// We extract an `Option` for the pointer because slices of zero
// elements don't necessarily point to memory, they are usually
// just integers. The only time they should be pointing to memory
// is when they are subslices of nonzero slices.
let (alloc, offset, n, ty) = match value.ty.kind() {
ty::Array(t, n) => {
let n = n.eval_usize(cx.tcx, cx.param_env);
// Shortcut for `n == 0` where no matter what `alloc` and `offset` we produce,
// the result would be exactly what we early return here.
if n == 0 {
if ctor_wild_subpatterns.len() as u64 != n {
return None;
}
return Some(Fields::empty());
}
match value.val {
ty::ConstKind::Value(ConstValue::ByRef { offset, alloc, .. }) => {
(Cow::Borrowed(alloc), offset, n, t)
}
_ => span_bug!(pat.span, "array pattern is {:?}", value,),
PatKind::Constant { .. } | PatKind::Range { .. } => {
match constructor {
IntRange(ctor) => {
let pat = IntRange::from_pat(cx.tcx, cx.param_env, pat)?;
ctor.intersection(cx.tcx, &pat)?;
// Constructor splitting should ensure that all intersections we encounter
// are actually inclusions.
assert!(ctor.is_subrange(&pat));
}
FloatRange(ctor_from, ctor_to, ctor_end) => {
let (pat_from, pat_to, pat_end, ty) = match *pat.kind {
PatKind::Constant { value } => (value, value, RangeEnd::Included, value.ty),
PatKind::Range(PatRange { lo, hi, end }) => (lo, hi, end, lo.ty),
_ => unreachable!(), // This is ensured by the branch we're in
};
let to = compare_const_vals(cx.tcx, ctor_to, pat_to, cx.param_env, ty)?;
let from = compare_const_vals(cx.tcx, ctor_from, pat_from, cx.param_env, ty)?;
let intersects = (from == Ordering::Greater || from == Ordering::Equal)
&& (to == Ordering::Less
|| (pat_end == *ctor_end && to == Ordering::Equal));
if !intersects {
return None;
}
}
ty::Slice(t) => {
match value.val {
ty::ConstKind::Value(ConstValue::Slice { data, start, end }) => {
let offset = Size::from_bytes(start);
let n = (end - start) as u64;
(Cow::Borrowed(data), offset, n, t)
}
ty::ConstKind::Value(ConstValue::ByRef { .. }) => {
// FIXME(oli-obk): implement `deref` for `ConstValue`
return None;
}
Str(ctor_value) => {
let pat_value = match *pat.kind {
PatKind::Constant { value } => value,
_ => span_bug!(
pat.span,
"slice pattern constant must be scalar pair but is {:?}",
value,
"unexpected range pattern {:?} for constant value ctor",
pat
),
};
// FIXME: there's probably a more direct way of comparing for equality
if compare_const_vals(cx.tcx, ctor_value, pat_value, cx.param_env, pat.ty)?
!= Ordering::Equal
{
return None;
}
}
_ => span_bug!(
pat.span,
"unexpected const-val {:?} with ctor {:?}",
value,
constructor,
),
};
if ctor_wild_subpatterns.len() as u64 != n {
return None;
}
// Convert a constant slice/array pattern to a list of patterns.
let layout = cx.tcx.layout_of(cx.param_env.and(ty)).ok()?;
let ptr = Pointer::new(AllocId(0), offset);
let pats = cx.pattern_arena.alloc_from_iter((0..n).filter_map(|i| {
let ptr = ptr.offset(layout.size * i, &cx.tcx).ok()?;
let scalar = alloc.read_scalar(&cx.tcx, ptr, layout.size).ok()?;
let scalar = scalar.check_init().ok()?;
let value = ty::Const::from_scalar(cx.tcx, scalar, ty);
let pattern = Pat { ty, span: pat.span, kind: box PatKind::Constant { value } };
Some(pattern)
}));
// Ensure none of the dereferences failed.
if pats.len() as u64 != n {
return None;
}
Some(Fields::from_slice_unfiltered(pats))
}
PatKind::Constant { .. } | PatKind::Range { .. } => {
// If the constructor is a:
// - Single value: add a row if the pattern contains the constructor.
// - Range: add a row if the constructor intersects the pattern.
if let IntRange(ctor) = constructor {
let pat = IntRange::from_pat(cx.tcx, cx.param_env, pat)?;
ctor.intersection(cx.tcx, &pat)?;
// Constructor splitting should ensure that all intersections we encounter
// are actually inclusions.
assert!(ctor.is_subrange(&pat));
} else {
// Fallback for non-ranges and ranges that involve
// floating-point numbers, which are not conveniently handled
// by `IntRange`. For these cases, the constructor may not be a
// range so intersection actually devolves into being covered
// by the pattern.
constructor_covered_by_range(cx.tcx, cx.param_env, constructor, pat)?;
_ => {
// If we reach here, we must be trying to inspect an opaque constant. Thus we skip
// the row.
return None;
}
}
Some(Fields::empty())
}
@ -2850,21 +2637,6 @@ fn specialize_one_pattern<'p, 'tcx>(
let suffix = suffix.iter().enumerate().map(|(i, p)| (arity - suffix.len() + i, p));
Some(ctor_wild_subpatterns.replace_fields_indexed(prefix.chain(suffix)))
}
ConstantValue(cv) => {
match slice_pat_covered_by_const(
cx.tcx,
pat.span,
cv,
prefix,
slice,
suffix,
cx.param_env,
) {
Ok(true) => Some(Fields::empty()),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
_ => span_bug!(pat.span, "unexpected ctor {:?} for slice pat", constructor),
},

View File

@ -137,7 +137,7 @@ impl<'tcx> MatchVisitor<'_, 'tcx> {
patcx.include_lint_checks();
let pattern = patcx.lower_pattern(pat);
let pattern_ty = pattern.ty;
let pattern: &_ = cx.pattern_arena.alloc(expand_pattern(cx, pattern));
let pattern: &_ = cx.pattern_arena.alloc(expand_pattern(pattern));
if !patcx.errors.is_empty() {
*have_errors = true;
patcx.report_inlining_errors(pat.span);

View File

@ -387,14 +387,16 @@ impl<'a, 'tcx> ConstToPat<'a, 'tcx> {
// `&str` and `&[u8]` are represented as `ConstValue::Slice`, let's keep using this
// optimization for now.
ty::Str => PatKind::Constant { value: cv },
ty::Slice(elem_ty) if elem_ty == tcx.types.u8 => PatKind::Constant { value: cv },
// `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when
// matching against references, you can only use byte string literals.
// FIXME: clean this up, likely by permitting array patterns when matching on slices
ty::Array(elem_ty, _) if elem_ty == tcx.types.u8 => PatKind::Constant { value: cv },
// The typechecker has a special case for byte string literals, by treating them
// as slices. This means we turn `&[T; N]` constants into slice patterns, which
// has no negative effects on pattern matching, even if we're actually matching on
// arrays.
ty::Array(..) |
// Cannot merge this with the catch all branch below, because the `const_deref`
// changes the type from slice to array, and slice patterns behave differently from
// array patterns.
// changes the type from slice to array, we need to keep the original type in the
// pattern.
ty::Slice(..) => {
let old = self.behind_reference.replace(true);
let array = tcx.deref_const(self.param_env.and(cv));

View File

@ -158,6 +158,13 @@ crate enum PatKind<'tcx> {
subpattern: Pat<'tcx>,
},
/// One of the following:
/// * `&str`, which will be handled as a string pattern and thus exhaustiveness
/// checking will detect if you use the same string twice in different patterns.
/// * integer, bool, char or float, which will be handled by exhaustivenes to cover exactly
/// its own value, similar to `&str`, but these values are much simpler.
/// * Opaque constants, that must not be matched structurally. So anything that does not derive
/// `PartialEq` and `Eq`.
Constant {
value: &'tcx ty::Const<'tcx>,
},

View File

@ -0,0 +1,11 @@
// check-pass
// https://github.com/rust-lang/rust/issues/53708
#[derive(PartialEq, Eq)]
struct S;
fn main() {
const C: &S = &S;
match C {
C => {}
}
}

View File

@ -0,0 +1,17 @@
#![deny(unreachable_patterns)]
#[derive(PartialEq)]
struct Opaque(i32);
impl Eq for Opaque {}
const FOO: Opaque = Opaque(42);
fn main() {
match FOO {
FOO => {},
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
_ => {}
//~^ ERROR unreachable pattern
}
}

View File

@ -0,0 +1,20 @@
error: to use a constant of type `Opaque` in a pattern, `Opaque` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/issue-78057.rs:12:9
|
LL | FOO => {},
| ^^^
error: unreachable pattern
--> $DIR/issue-78057.rs:14:9
|
LL | _ => {}
| ^
|
note: the lint level is defined here
--> $DIR/issue-78057.rs:1:9
|
LL | #![deny(unreachable_patterns)]
| ^^^^^^^^^^^^^^^^^^^^
error: aborting due to 2 previous errors

View File

@ -0,0 +1,114 @@
// This file tests the exhaustiveness algorithm on opaque constants. Most of the examples give
// unnecessary warnings because const_to_pat.rs converts a constant pattern to a wildcard when the
// constant is not allowed as a pattern. This is an edge case so we may not care to fix it.
// See also https://github.com/rust-lang/rust/issues/78057
#![deny(unreachable_patterns)]
#[derive(PartialEq)]
struct Foo(i32);
impl Eq for Foo {}
const FOO: Foo = Foo(42);
const FOO_REF: &Foo = &Foo(42);
const FOO_REF_REF: &&Foo = &&Foo(42);
#[derive(PartialEq)]
struct Bar;
impl Eq for Bar {}
const BAR: Bar = Bar;
#[derive(PartialEq)]
enum Baz {
Baz1,
Baz2
}
impl Eq for Baz {}
const BAZ: Baz = Baz::Baz1;
type Quux = fn(usize, usize) -> usize;
fn quux(a: usize, b: usize) -> usize { a + b }
const QUUX: Quux = quux;
fn main() {
match FOO {
FOO => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
_ => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
}
match FOO_REF {
FOO_REF => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
Foo(_) => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
}
// This used to cause an ICE (https://github.com/rust-lang/rust/issues/78071)
match FOO_REF_REF {
FOO_REF_REF => {}
//~^ WARNING must be annotated with `#[derive(PartialEq, Eq)]`
//~| WARNING this was previously accepted by the compiler but is being phased out
Foo(_) => {}
}
match BAR {
Bar => {}
BAR => {} // should not be emitting unreachable warning
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
//~| ERROR unreachable pattern
_ => {}
//~^ ERROR unreachable pattern
}
match BAR {
BAR => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
Bar => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
_ => {}
//~^ ERROR unreachable pattern
}
match BAR {
BAR => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
BAR => {} // should not be emitting unreachable warning
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
//~| ERROR unreachable pattern
_ => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
}
match BAZ {
BAZ => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
Baz::Baz1 => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
_ => {}
//~^ ERROR unreachable pattern
}
match BAZ {
Baz::Baz1 => {}
BAZ => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
_ => {}
//~^ ERROR unreachable pattern
}
match BAZ {
BAZ => {}
//~^ ERROR must be annotated with `#[derive(PartialEq, Eq)]`
Baz::Baz2 => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
_ => {} // should not be emitting unreachable warning
//~^ ERROR unreachable pattern
}
match QUUX {
QUUX => {}
QUUX => {}
_ => {}
}
}

View File

@ -0,0 +1,158 @@
error: to use a constant of type `Foo` in a pattern, `Foo` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:34:9
|
LL | FOO => {}
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:36:9
|
LL | _ => {} // should not be emitting unreachable warning
| ^
|
note: the lint level is defined here
--> $DIR/consts-opaque.rs:6:9
|
LL | #![deny(unreachable_patterns)]
| ^^^^^^^^^^^^^^^^^^^^
error: to use a constant of type `Foo` in a pattern, `Foo` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:41:9
|
LL | FOO_REF => {}
| ^^^^^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:43:9
|
LL | Foo(_) => {} // should not be emitting unreachable warning
| ^^^^^^
warning: to use a constant of type `Foo` in a pattern, `Foo` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:49:9
|
LL | FOO_REF_REF => {}
| ^^^^^^^^^^^
|
= note: `#[warn(indirect_structural_match)]` on by default
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #62411 <https://github.com/rust-lang/rust/issues/62411>
error: to use a constant of type `Bar` in a pattern, `Bar` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:57:9
|
LL | BAR => {} // should not be emitting unreachable warning
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:57:9
|
LL | Bar => {}
| --- matches any value
LL | BAR => {} // should not be emitting unreachable warning
| ^^^ unreachable pattern
error: unreachable pattern
--> $DIR/consts-opaque.rs:60:9
|
LL | Bar => {}
| --- matches any value
...
LL | _ => {}
| ^ unreachable pattern
error: to use a constant of type `Bar` in a pattern, `Bar` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:65:9
|
LL | BAR => {}
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:67:9
|
LL | Bar => {} // should not be emitting unreachable warning
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:69:9
|
LL | Bar => {} // should not be emitting unreachable warning
| --- matches any value
LL |
LL | _ => {}
| ^ unreachable pattern
error: to use a constant of type `Bar` in a pattern, `Bar` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:74:9
|
LL | BAR => {}
| ^^^
error: to use a constant of type `Bar` in a pattern, `Bar` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:76:9
|
LL | BAR => {} // should not be emitting unreachable warning
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:76:9
|
LL | BAR => {} // should not be emitting unreachable warning
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:79:9
|
LL | _ => {} // should not be emitting unreachable warning
| ^
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:84:9
|
LL | BAZ => {}
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:86:9
|
LL | Baz::Baz1 => {} // should not be emitting unreachable warning
| ^^^^^^^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:88:9
|
LL | _ => {}
| ^
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:94:9
|
LL | BAZ => {}
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:96:9
|
LL | _ => {}
| ^
error: to use a constant of type `Baz` in a pattern, `Baz` must be annotated with `#[derive(PartialEq, Eq)]`
--> $DIR/consts-opaque.rs:101:9
|
LL | BAZ => {}
| ^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:103:9
|
LL | Baz::Baz2 => {} // should not be emitting unreachable warning
| ^^^^^^^^^
error: unreachable pattern
--> $DIR/consts-opaque.rs:105:9
|
LL | _ => {} // should not be emitting unreachable warning
| ^
error: aborting due to 22 previous errors; 1 warning emitted

View File

@ -7,11 +7,11 @@ LL | match buf {
= help: ensure that all possible cases are being handled, possibly by adding wildcards or more match arms
= note: the matched value is of type `&[u8; 4]`
error[E0004]: non-exhaustive patterns: `&[]`, `&[_]`, `&[_, _]` and 2 more not covered
error[E0004]: non-exhaustive patterns: `&[0_u8..=64_u8, _, _, _]` and `&[66_u8..=u8::MAX, _, _, _]` not covered
--> $DIR/match-byte-array-patterns-2.rs:10:11
|
LL | match buf {
| ^^^ patterns `&[]`, `&[_]`, `&[_, _]` and 2 more not covered
| ^^^ patterns `&[0_u8..=64_u8, _, _, _]` and `&[66_u8..=u8::MAX, _, _, _]` not covered
|
= help: ensure that all possible cases are being handled, possibly by adding wildcards or more match arms
= note: the matched value is of type `&[u8]`