auto merge of #13393 : alexcrichton/rust/hopefully-fix-bsd, r=sfackler

This appears to be causing the BSD bots to lock up when looking at the core
dumps I've managed to get. Dropping the `FileDesc` structure triggers the `Arc`
it's contained in to get cleaned up, invoking free(). This instead just closes
the file descriptor (the arc itself is never cleaned up).

I'm still not entirely sure why this is a problem because the pthreads runtime
should register hooks for fork() to prevent this sort of deadlock, but perhaps
that's only done on linux?
This commit is contained in:
bors 2014-04-07 21:21:47 -07:00
commit e415c25bcd

View File

@ -524,7 +524,37 @@ fn spawn_process_os(config: p::ProcessConfig,
Ok(..) => fail!("short read on the cloexec pipe"),
};
}
drop(input);
// And at this point we've reached a special time in the life of the
// child. The child must now be considered hamstrung and unable to
// do anything other than syscalls really. Consider the following
// scenario:
//
// 1. Thread A of process 1 grabs the malloc() mutex
// 2. Thread B of process 1 forks(), creating thread C
// 3. Thread C of process 2 then attempts to malloc()
// 4. The memory of process 2 is the same as the memory of
// process 1, so the mutex is locked.
//
// This situation looks a lot like deadlock, right? It turns out
// that this is what pthread_atfork() takes care of, which is
// presumably implemented across platforms. The first thing that
// threads to *before* forking is to do things like grab the malloc
// mutex, and then after the fork they unlock it.
//
// Despite this information, libnative's spawn has been witnessed to
// deadlock on both OSX and FreeBSD. I'm not entirely sure why, but
// all collected backtraces point at malloc/free traffic in the
// child spawned process.
//
// For this reason, the block of code below should contain 0
// invocations of either malloc of free (or their related friends).
//
// As an example of not having malloc/free traffic, we don't close
// this file descriptor by dropping the FileDesc (which contains an
// allocation). Instead we just close it manually. This will never
// have the drop glue anyway because this code never returns (the
// child will either exec() or invoke libc::exit)
let _ = libc::close(input.fd());
fn fail(output: &mut file::FileDesc) -> ! {
let errno = os::errno();