Implement proper C ABI lowering for RISC-V

This commit is contained in:
msizanoen1 2020-01-21 21:52:19 +07:00
parent 0d34a87722
commit e590164175
3 changed files with 331 additions and 15 deletions

View File

@ -2650,6 +2650,7 @@ where
.map(|(i, ty)| arg_of(ty, Some(i)))
.collect(),
c_variadic: sig.c_variadic,
fixed_count: inputs.len(),
conv,
};
fn_abi.adjust_for_abi(cx, sig.abi);

View File

@ -120,6 +120,7 @@ impl Reg {
reg_ctor!(i16, Integer, 16);
reg_ctor!(i32, Integer, 32);
reg_ctor!(i64, Integer, 64);
reg_ctor!(i128, Integer, 128);
reg_ctor!(f32, Float, 32);
reg_ctor!(f64, Float, 64);
@ -493,6 +494,12 @@ pub struct FnAbi<'a, Ty> {
pub c_variadic: bool,
/// The count of non-variadic arguments.
///
/// Should only be different from args.len() when c_variadic is true.
/// This can be used to know wether an argument is variadic or not.
pub fixed_count: usize,
pub conv: Conv,
}
@ -534,8 +541,7 @@ impl<'a, Ty> FnAbi<'a, Ty> {
"nvptx" => nvptx::compute_abi_info(self),
"nvptx64" => nvptx64::compute_abi_info(self),
"hexagon" => hexagon::compute_abi_info(self),
"riscv32" => riscv::compute_abi_info(self, 32),
"riscv64" => riscv::compute_abi_info(self, 64),
"riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
"wasm32" if cx.target_spec().target_os != "emscripten" => {
wasm32_bindgen_compat::compute_abi_info(self)
}

View File

@ -1,49 +1,358 @@
// Reference: RISC-V ELF psABI specification
// https://github.com/riscv/riscv-elf-psabi-doc
//
// Reference: Clang RISC-V ELF psABI lowering code
// https://github.com/llvm/llvm-project/blob/8e780252a7284be45cf1ba224cabd884847e8e92/clang/lib/CodeGen/TargetInfo.cpp#L9311-L9773
use crate::abi::call::{ArgAbi, FnAbi};
use crate::abi::call::{ArgAbi, ArgAttribute, CastTarget, FnAbi, PassMode, Reg, RegKind, Uniform};
use crate::abi::{
self, Abi, FieldPlacement, HasDataLayout, LayoutOf, Size, TyLayout, TyLayoutMethods,
};
use crate::spec::HasTargetSpec;
#[derive(Copy, Clone)]
enum RegPassKind {
Float(Reg),
Integer(Reg),
Unknown,
}
#[derive(Copy, Clone)]
enum FloatConv {
FloatPair(Reg, Reg),
Float(Reg),
MixedPair(Reg, Reg),
}
#[derive(Copy, Clone)]
struct CannotUseFpConv;
fn is_riscv_aggregate<'a, Ty>(arg: &ArgAbi<'a, Ty>) -> bool {
match arg.layout.abi {
Abi::Vector { .. } => true,
_ => arg.layout.is_aggregate(),
}
}
fn should_use_fp_conv_helper<'a, Ty, C>(
cx: &C,
arg_layout: &TyLayout<'a, Ty>,
xlen: u64,
flen: u64,
field1_kind: &mut RegPassKind,
field2_kind: &mut RegPassKind,
) -> Result<(), CannotUseFpConv>
where
Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>>,
{
match arg_layout.abi {
Abi::Scalar(ref scalar) => match scalar.value {
abi::Int(..) | abi::Pointer => {
if arg_layout.size.bits() > xlen {
return Err(CannotUseFpConv);
}
match (*field1_kind, *field2_kind) {
(RegPassKind::Unknown, _) => {
*field1_kind = RegPassKind::Integer(Reg {
kind: RegKind::Integer,
size: arg_layout.size,
});
}
(RegPassKind::Float(_), RegPassKind::Unknown) => {
*field2_kind = RegPassKind::Integer(Reg {
kind: RegKind::Integer,
size: arg_layout.size,
});
}
_ => return Err(CannotUseFpConv),
}
}
abi::F32 | abi::F64 => {
if arg_layout.size.bits() > flen {
return Err(CannotUseFpConv);
}
match (*field1_kind, *field2_kind) {
(RegPassKind::Unknown, _) => {
*field1_kind =
RegPassKind::Float(Reg { kind: RegKind::Float, size: arg_layout.size });
}
(_, RegPassKind::Unknown) => {
*field2_kind =
RegPassKind::Float(Reg { kind: RegKind::Float, size: arg_layout.size });
}
_ => return Err(CannotUseFpConv),
}
}
},
Abi::Vector { .. } | Abi::Uninhabited => return Err(CannotUseFpConv),
Abi::ScalarPair(..) | Abi::Aggregate { .. } => match arg_layout.fields {
FieldPlacement::Union(_) => {
if !arg_layout.is_zst() {
return Err(CannotUseFpConv);
}
}
FieldPlacement::Array { count, .. } => {
for _ in 0..count {
let elem_layout = arg_layout.field(cx, 0);
should_use_fp_conv_helper(
cx,
&elem_layout,
xlen,
flen,
field1_kind,
field2_kind,
)?;
}
}
FieldPlacement::Arbitrary { .. } => {
match arg_layout.variants {
abi::Variants::Multiple { .. } => return Err(CannotUseFpConv),
abi::Variants::Single { .. } => (),
}
for i in arg_layout.fields.index_by_increasing_offset() {
let field = arg_layout.field(cx, i);
should_use_fp_conv_helper(cx, &field, xlen, flen, field1_kind, field2_kind)?;
}
}
},
}
Ok(())
}
fn should_use_fp_conv<'a, Ty, C>(
cx: &C,
arg: &TyLayout<'a, Ty>,
xlen: u64,
flen: u64,
) -> Option<FloatConv>
where
Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>>,
{
let mut field1_kind = RegPassKind::Unknown;
let mut field2_kind = RegPassKind::Unknown;
if should_use_fp_conv_helper(cx, arg, xlen, flen, &mut field1_kind, &mut field2_kind).is_err() {
return None;
}
match (field1_kind, field2_kind) {
(RegPassKind::Integer(l), RegPassKind::Float(r)) => Some(FloatConv::MixedPair(l, r)),
(RegPassKind::Float(l), RegPassKind::Integer(r)) => Some(FloatConv::MixedPair(l, r)),
(RegPassKind::Float(l), RegPassKind::Float(r)) => Some(FloatConv::FloatPair(l, r)),
(RegPassKind::Float(f), RegPassKind::Unknown) => Some(FloatConv::Float(f)),
_ => None,
}
}
fn classify_ret<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, xlen: u64, flen: u64) -> bool
where
Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>>,
{
if let Some(conv) = should_use_fp_conv(cx, &arg.layout, xlen, flen) {
match conv {
FloatConv::Float(f) => {
arg.cast_to(f);
}
FloatConv::FloatPair(l, r) => {
arg.cast_to(CastTarget::pair(l, r));
}
FloatConv::MixedPair(l, r) => {
arg.cast_to(CastTarget::pair(l, r));
}
}
return false;
}
let total = arg.layout.size;
fn classify_ret<Ty>(arg: &mut ArgAbi<'_, Ty>, xlen: u64) {
// "Scalars wider than 2✕XLEN are passed by reference and are replaced in
// the argument list with the address."
// "Aggregates larger than 2✕XLEN bits are passed by reference and are
// replaced in the argument list with the address, as are C++ aggregates
// with nontrivial copy constructors, destructors, or vtables."
if arg.layout.size.bits() > 2 * xlen {
arg.make_indirect();
if total.bits() > 2 * xlen {
// We rely on the LLVM backend lowering code to lower passing a scalar larger than 2*XLEN.
if is_riscv_aggregate(arg) {
arg.make_indirect();
}
return true;
}
let xlen_reg = match xlen {
32 => Reg::i32(),
64 => Reg::i64(),
_ => unreachable!("Unsupported XLEN: {}", xlen),
};
if is_riscv_aggregate(arg) {
if total.bits() <= xlen {
arg.cast_to(xlen_reg);
} else {
arg.cast_to(Uniform { unit: xlen_reg, total: Size::from_bits(xlen * 2) });
}
return false;
}
// "When passed in registers, scalars narrower than XLEN bits are widened
// according to the sign of their type up to 32 bits, then sign-extended to
// XLEN bits."
arg.extend_integer_width_to(xlen); // this method only affects integer scalars
extend_integer_width(arg, xlen);
false
}
fn classify_arg<Ty>(arg: &mut ArgAbi<'_, Ty>, xlen: u64) {
fn classify_arg<'a, Ty, C>(
cx: &C,
arg: &mut ArgAbi<'a, Ty>,
xlen: u64,
flen: u64,
is_vararg: bool,
avail_gprs: &mut u64,
avail_fprs: &mut u64,
) where
Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>>,
{
if !is_vararg {
match should_use_fp_conv(cx, &arg.layout, xlen, flen) {
Some(FloatConv::Float(f)) if *avail_fprs >= 1 => {
*avail_fprs -= 1;
arg.cast_to(f);
return;
}
Some(FloatConv::FloatPair(l, r)) if *avail_fprs >= 2 => {
*avail_fprs -= 2;
arg.cast_to(CastTarget::pair(l, r));
return;
}
Some(FloatConv::MixedPair(l, r)) if *avail_fprs >= 1 && *avail_gprs >= 1 => {
*avail_gprs -= 1;
*avail_fprs -= 1;
arg.cast_to(CastTarget::pair(l, r));
return;
}
_ => (),
}
}
let total = arg.layout.size;
let align = arg.layout.align.abi.bits();
// "Scalars wider than 2✕XLEN are passed by reference and are replaced in
// the argument list with the address."
// "Aggregates larger than 2✕XLEN bits are passed by reference and are
// replaced in the argument list with the address, as are C++ aggregates
// with nontrivial copy constructors, destructors, or vtables."
if arg.layout.size.bits() > 2 * xlen {
arg.make_indirect();
if total.bits() > 2 * xlen {
// We rely on the LLVM backend lowering code to lower passing a scalar larger than 2*XLEN.
if is_riscv_aggregate(arg) {
arg.make_indirect();
}
if *avail_gprs >= 1 {
*avail_gprs -= 1;
}
return;
}
let double_xlen_reg = match xlen {
32 => Reg::i64(),
64 => Reg::i128(),
_ => unreachable!("Unsupported XLEN: {}", xlen),
};
let xlen_reg = match xlen {
32 => Reg::i32(),
64 => Reg::i64(),
_ => unreachable!("Unsupported XLEN: {}", xlen),
};
if total.bits() > xlen {
let align_regs = align > xlen;
if is_riscv_aggregate(arg) {
arg.cast_to(Uniform {
unit: if align_regs { double_xlen_reg } else { xlen_reg },
total: Size::from_bits(xlen * 2),
});
}
if align_regs && is_vararg {
*avail_gprs -= *avail_gprs % 2;
}
if *avail_gprs >= 2 {
*avail_gprs -= 2;
} else {
*avail_gprs = 0;
}
return;
} else if is_riscv_aggregate(arg) {
arg.cast_to(xlen_reg);
if *avail_gprs >= 1 {
*avail_gprs -= 1;
}
return;
}
// "When passed in registers, scalars narrower than XLEN bits are widened
// according to the sign of their type up to 32 bits, then sign-extended to
// XLEN bits."
arg.extend_integer_width_to(xlen); // this method only affects integer scalars
if *avail_gprs >= 1 {
extend_integer_width(arg, xlen);
*avail_gprs -= 1;
}
}
pub fn compute_abi_info<Ty>(fn_abi: &mut FnAbi<'_, Ty>, xlen: u64) {
fn extend_integer_width<'a, Ty>(arg: &mut ArgAbi<'a, Ty>, xlen: u64) {
match arg.layout.abi {
Abi::Scalar(ref scalar) => {
match scalar.value {
abi::Int(i, _) => {
// 32-bit integers are always sign-extended
if i.size().bits() == 32 && xlen > 32 {
if let PassMode::Direct(ref mut attrs) = arg.mode {
attrs.set(ArgAttribute::SExt);
return;
}
}
}
_ => (),
}
}
_ => (),
}
arg.extend_integer_width_to(xlen);
}
pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
Ty: TyLayoutMethods<'a, C> + Copy,
C: LayoutOf<Ty = Ty, TyLayout = TyLayout<'a, Ty>> + HasDataLayout + HasTargetSpec,
{
let flen = match &cx.target_spec().options.llvm_abiname[..] {
"ilp32f" | "lp64f" => 32,
"ilp32d" | "lp64d" => 64,
_ => 0,
};
let xlen = cx.data_layout().pointer_size.bits();
let mut avail_gprs = 8;
let mut avail_fprs = 8;
if !fn_abi.ret.is_ignore() {
classify_ret(&mut fn_abi.ret, xlen);
if classify_ret(cx, &mut fn_abi.ret, xlen, flen) {
avail_gprs -= 1;
}
}
for arg in &mut fn_abi.args {
for (i, arg) in fn_abi.args.iter_mut().enumerate() {
if arg.is_ignore() {
continue;
}
classify_arg(arg, xlen);
classify_arg(
cx,
arg,
xlen,
flen,
i >= fn_abi.fixed_count,
&mut avail_gprs,
&mut avail_fprs,
);
}
}