Rollup merge of #35936 - matthew-piziak:div-rational-example, r=GuillaumeGomez

replace `Div` example with something more evocative of division

Analogous to PR #35860.

r? @GuillaumeGomez
This commit is contained in:
Guillaume Gomez 2016-08-23 22:48:03 +02:00 committed by GitHub
commit ed4c0fd01d

View File

@ -421,25 +421,68 @@ mul_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
///
/// # Examples
///
/// A trivial implementation of `Div`. When `Foo / Foo` happens, it ends up
/// calling `div`, and therefore, `main` prints `Dividing!`.
/// Implementing a `Div`idable rational number struct:
///
/// ```
/// use std::ops::Div;
///
/// struct Foo;
/// // The uniqueness of rational numbers in lowest terms is a consequence of
/// // the fundamental theorem of arithmetic.
/// #[derive(Eq)]
/// #[derive(PartialEq, Debug)]
/// struct Rational {
/// nominator: usize,
/// denominator: usize,
/// }
///
/// impl Div for Foo {
/// type Output = Foo;
/// impl Rational {
/// fn new(nominator: usize, denominator: usize) -> Self {
/// if denominator == 0 {
/// panic!("Zero is an invalid denominator!");
/// }
///
/// fn div(self, _rhs: Foo) -> Foo {
/// println!("Dividing!");
/// self
/// // Reduce to lowest terms by dividing by the greatest common
/// // divisor.
/// let gcd = gcd(nominator, denominator);
/// Rational {
/// nominator: nominator / gcd,
/// denominator: denominator / gcd,
/// }
/// }
/// }
///
/// impl Div for Rational {
/// // The division of rational numbers is a closed operation.
/// type Output = Self;
///
/// fn div(self, rhs: Self) -> Self {
/// if rhs.nominator == 0 {
/// panic!("Cannot divide by zero-valued `Rational`!");
/// }
///
/// let nominator = self.nominator * rhs.denominator;
/// let denominator = self.denominator * rhs.nominator;
/// Rational::new(nominator, denominator)
/// }
/// }
///
/// // Euclid's two-thousand-year-old algorithm for finding the greatest common
/// // divisor.
/// fn gcd(x: usize, y: usize) -> usize {
/// let mut x = x;
/// let mut y = y;
/// while y != 0 {
/// let t = y;
/// y = x % y;
/// x = t;
/// }
/// x
/// }
///
/// fn main() {
/// Foo / Foo;
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
/// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
/// Rational::new(2, 3));
/// }
/// ```
///