Auto merge of #45725 - alexcrichton:std-less-rand, r=dtolnay

Working towards a libc-less (wasm32) libstd

This is a series of commits I was able to extract from prepare to comiple libstd on a "bare libc-less" target, notably wasm32. The actual wasm32 bits I intend to send in a PR later, this is just some internal refactorings required for libstd to work with a `libc` that's empty and a few other assorted refactorings.

No functional change should be included in this PR for users of libstd, this is intended to just be internal refactorings.
This commit is contained in:
bors 2017-11-09 18:14:48 +00:00
commit f1ea23e2cc
68 changed files with 402 additions and 4549 deletions

14
src/Cargo.lock generated
View File

@ -28,6 +28,7 @@ name = "alloc"
version = "0.0.0"
dependencies = [
"core 0.0.0",
"rand 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
"std_unicode 0.0.0",
]
@ -367,7 +368,7 @@ version = "0.1.0"
name = "core"
version = "0.0.0"
dependencies = [
"rand 0.0.0",
"rand 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
@ -1366,13 +1367,6 @@ dependencies = [
"typed-arena 1.3.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "rand"
version = "0.0.0"
dependencies = [
"core 0.0.0",
]
[[package]]
name = "rand"
version = "0.3.17"
@ -1596,6 +1590,7 @@ name = "rustc_back"
version = "0.0.0"
dependencies = [
"log 0.3.8 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
"serialize 0.0.0",
"syntax 0.0.0",
]
@ -1703,6 +1698,7 @@ version = "0.0.0"
dependencies = [
"graphviz 0.0.0",
"log 0.3.8 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
"rustc 0.0.0",
"rustc_data_structures 0.0.0",
"serialize 0.0.0",
@ -2125,7 +2121,7 @@ dependencies = [
"panic_abort 0.0.0",
"panic_unwind 0.0.0",
"profiler_builtins 0.0.0",
"rand 0.0.0",
"rand 0.3.17 (registry+https://github.com/rust-lang/crates.io-index)",
"rustc_asan 0.0.0",
"rustc_lsan 0.0.0",
"rustc_msan 0.0.0",

View File

@ -107,8 +107,8 @@ impl Step for Std {
let mut cargo = builder.cargo(compiler, Mode::Libstd, target, "build");
std_cargo(build, &compiler, target, &mut cargo);
run_cargo(build,
&mut cargo,
&libstd_stamp(build, compiler, target));
&mut cargo,
&libstd_stamp(build, compiler, target));
builder.ensure(StdLink {
compiler: builder.compiler(compiler.stage, build.build),
@ -359,8 +359,8 @@ impl Step for Test {
let mut cargo = builder.cargo(compiler, Mode::Libtest, target, "build");
test_cargo(build, &compiler, target, &mut cargo);
run_cargo(build,
&mut cargo,
&libtest_stamp(build, compiler, target));
&mut cargo,
&libtest_stamp(build, compiler, target));
builder.ensure(TestLink {
compiler: builder.compiler(compiler.stage, build.build),
@ -866,12 +866,13 @@ fn run_cargo(build: &Build, cargo: &mut Command, stamp: &Path) {
// `std-<hash>.dll.lib` on Windows. The aforementioned methods only
// split the file name by the last extension (`.lib`) while we need
// to split by all extensions (`.dll.lib`).
let expected_len = t!(filename.metadata()).len();
let filename = filename.file_name().unwrap().to_str().unwrap();
let mut parts = filename.splitn(2, '.');
let file_stem = parts.next().unwrap().to_owned();
let extension = parts.next().unwrap().to_owned();
toplevel.push((file_stem, extension));
toplevel.push((file_stem, extension, expected_len));
}
}
@ -891,11 +892,12 @@ fn run_cargo(build: &Build, cargo: &mut Command, stamp: &Path) {
.map(|e| t!(e))
.map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
.collect::<Vec<_>>();
for (prefix, extension) in toplevel {
let candidates = contents.iter().filter(|&&(_, ref filename, _)| {
for (prefix, extension, expected_len) in toplevel {
let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
filename.starts_with(&prefix[..]) &&
filename[prefix.len()..].starts_with("-") &&
filename.ends_with(&extension[..])
filename.ends_with(&extension[..]) &&
meta.len() == expected_len
});
let max = candidates.max_by_key(|&&(_, _, ref metadata)| {
FileTime::from_last_modification_time(metadata)

View File

@ -743,7 +743,6 @@ impl Step for Src {
"src/liblibc",
"src/libpanic_abort",
"src/libpanic_unwind",
"src/librand",
"src/librustc_asan",
"src/librustc_lsan",
"src/librustc_msan",

View File

@ -1,5 +0,0 @@
# `rand`
This feature is internal to the Rust compiler and is not intended for general use.
------------------------

View File

@ -11,6 +11,9 @@ path = "lib.rs"
core = { path = "../libcore" }
std_unicode = { path = "../libstd_unicode" }
[dev-dependencies]
rand = "0.3"
[[test]]
name = "collectionstests"
path = "../liballoc/tests/lib.rs"

View File

@ -135,6 +135,8 @@
extern crate std;
#[cfg(test)]
extern crate test;
#[cfg(test)]
extern crate rand;
extern crate std_unicode;

View File

@ -1269,10 +1269,11 @@ unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}
#[cfg(test)]
mod tests {
use std::__rand::{thread_rng, Rng};
use std::thread;
use std::vec::Vec;
use rand::{thread_rng, Rng};
use super::{LinkedList, Node};
#[cfg(test)]

View File

@ -30,6 +30,7 @@
#![feature(unicode)]
extern crate std_unicode;
extern crate rand;
use std::hash::{Hash, Hasher};
use std::collections::hash_map::DefaultHasher;

View File

@ -10,9 +10,10 @@
use std::cmp::Ordering::{Equal, Greater, Less};
use std::mem;
use std::__rand::{Rng, thread_rng};
use std::rc::Rc;
use rand::{Rng, thread_rng};
fn square(n: usize) -> usize {
n * n
}

View File

@ -10,7 +10,7 @@ test = false
bench = false
[dev-dependencies]
rand = { path = "../librand" }
rand = "0.3"
[[test]]
name = "coretests"

View File

@ -10,8 +10,7 @@
use std::prelude::v1::*;
use std::{str, mem, i16, f32, f64, fmt};
use std::__rand as rand;
use rand::{Rand, XorShiftRng};
use rand::{self, Rand, XorShiftRng};
use rand::distributions::{IndependentSample, Range};
use core::num::flt2dec::{decode, DecodableFloat, FullDecoded, Decoded};

View File

@ -1,12 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
name = "rand"
version = "0.0.0"
[lib]
name = "rand"
path = "lib.rs"
doc = false
[dependencies]
core = { path = "../libcore" }

View File

@ -1,309 +0,0 @@
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
use core::fmt;
use {Rand, Rng, SeedableRng};
const KEY_WORDS: usize = 8; // 8 words for the 256-bit key
const STATE_WORDS: usize = 16;
const CHACHA_ROUNDS: usize = 20; // Cryptographically secure from 8 upwards as of this writing
/// A random number generator that uses the ChaCha20 algorithm [1].
///
/// The ChaCha algorithm is widely accepted as suitable for
/// cryptographic purposes, but this implementation has not been
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: D. J. Bernstein, [*ChaCha, a variant of
/// Salsa20*](http://cr.yp.to/chacha.html)
#[derive(Copy, Clone)]
pub struct ChaChaRng {
buffer: [u32; STATE_WORDS], // Internal buffer of output
state: [u32; STATE_WORDS], // Initial state
index: usize, // Index into state
}
impl fmt::Debug for ChaChaRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ChaChaRng")
.field("buffer", &self.buffer.iter())
.field("state", &self.state.iter())
.field("index", &self.index)
.finish()
}
}
static EMPTY: ChaChaRng = ChaChaRng {
buffer: [0; STATE_WORDS],
state: [0; STATE_WORDS],
index: STATE_WORDS,
};
macro_rules! quarter_round{
($a: expr, $b: expr, $c: expr, $d: expr) => {{
$a = $a.wrapping_add($b); $d = $d ^ $a; $d = $d.rotate_left(16);
$c = $c.wrapping_add($d); $b = $b ^ $c; $b = $b.rotate_left(12);
$a = $a.wrapping_add($b); $d = $d ^ $a; $d = $d.rotate_left( 8);
$c = $c.wrapping_add($d); $b = $b ^ $c; $b = $b.rotate_left( 7);
}}
}
macro_rules! double_round{
($x: expr) => {{
// Column round
quarter_round!($x[ 0], $x[ 4], $x[ 8], $x[12]);
quarter_round!($x[ 1], $x[ 5], $x[ 9], $x[13]);
quarter_round!($x[ 2], $x[ 6], $x[10], $x[14]);
quarter_round!($x[ 3], $x[ 7], $x[11], $x[15]);
// Diagonal round
quarter_round!($x[ 0], $x[ 5], $x[10], $x[15]);
quarter_round!($x[ 1], $x[ 6], $x[11], $x[12]);
quarter_round!($x[ 2], $x[ 7], $x[ 8], $x[13]);
quarter_round!($x[ 3], $x[ 4], $x[ 9], $x[14]);
}}
}
#[inline]
fn core(output: &mut [u32; STATE_WORDS], input: &[u32; STATE_WORDS]) {
*output = *input;
for _ in 0..CHACHA_ROUNDS / 2 {
double_round!(output);
}
for i in 0..STATE_WORDS {
output[i] = output[i].wrapping_add(input[i]);
}
}
impl ChaChaRng {
/// Create an ChaCha random number generator using the default
/// fixed key of 8 zero words.
pub fn new_unseeded() -> ChaChaRng {
let mut rng = EMPTY;
rng.init(&[0; KEY_WORDS]);
rng
}
/// Sets the internal 128-bit ChaCha counter to
/// a user-provided value. This permits jumping
/// arbitrarily ahead (or backwards) in the pseudorandom stream.
///
/// Since the nonce words are used to extend the counter to 128 bits,
/// users wishing to obtain the conventional ChaCha pseudorandom stream
/// associated with a particular nonce can call this function with
/// arguments `0, desired_nonce`.
pub fn set_counter(&mut self, counter_low: u64, counter_high: u64) {
self.state[12] = (counter_low >> 0) as u32;
self.state[13] = (counter_low >> 32) as u32;
self.state[14] = (counter_high >> 0) as u32;
self.state[15] = (counter_high >> 32) as u32;
self.index = STATE_WORDS; // force recomputation
}
/// Initializes `self.state` with the appropriate key and constants
///
/// We deviate slightly from the ChaCha specification regarding
/// the nonce, which is used to extend the counter to 128 bits.
/// This is provably as strong as the original cipher, though,
/// since any distinguishing attack on our variant also works
/// against ChaCha with a chosen-nonce. See the XSalsa20 [1]
/// security proof for a more involved example of this.
///
/// The modified word layout is:
/// ```text
/// constant constant constant constant
/// key key key key
/// key key key key
/// counter counter counter counter
/// ```
/// [1]: Daniel J. Bernstein. [*Extending the Salsa20
/// nonce.*](http://cr.yp.to/papers.html#xsalsa)
fn init(&mut self, key: &[u32; KEY_WORDS]) {
self.state[0] = 0x61707865;
self.state[1] = 0x3320646E;
self.state[2] = 0x79622D32;
self.state[3] = 0x6B206574;
for i in 0..KEY_WORDS {
self.state[4 + i] = key[i];
}
self.state[12] = 0;
self.state[13] = 0;
self.state[14] = 0;
self.state[15] = 0;
self.index = STATE_WORDS;
}
/// Refill the internal output buffer (`self.buffer`)
fn update(&mut self) {
core(&mut self.buffer, &self.state);
self.index = 0;
// update 128-bit counter
self.state[12] += 1;
if self.state[12] != 0 {
return;
}
self.state[13] += 1;
if self.state[13] != 0 {
return;
}
self.state[14] += 1;
if self.state[14] != 0 {
return;
}
self.state[15] += 1;
}
}
impl Rng for ChaChaRng {
#[inline]
fn next_u32(&mut self) -> u32 {
if self.index == STATE_WORDS {
self.update();
}
let value = self.buffer[self.index % STATE_WORDS];
self.index += 1;
value
}
}
impl<'a> SeedableRng<&'a [u32]> for ChaChaRng {
fn reseed(&mut self, seed: &'a [u32]) {
// reset state
self.init(&[0; KEY_WORDS]);
// set key in place
let key = &mut self.state[4..4 + KEY_WORDS];
for (k, s) in key.iter_mut().zip(seed) {
*k = *s;
}
}
/// Create a ChaCha generator from a seed,
/// obtained from a variable-length u32 array.
/// Only up to 8 words are used; if less than 8
/// words are used, the remaining are set to zero.
fn from_seed(seed: &'a [u32]) -> ChaChaRng {
let mut rng = EMPTY;
rng.reseed(seed);
rng
}
}
impl Rand for ChaChaRng {
fn rand<R: Rng>(other: &mut R) -> ChaChaRng {
let mut key: [u32; KEY_WORDS] = [0; KEY_WORDS];
for word in &mut key {
*word = other.gen();
}
SeedableRng::from_seed(&key[..])
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use {Rng, SeedableRng};
use super::ChaChaRng;
#[test]
fn test_rng_rand_seeded() {
let s = ::test::rng().gen_iter::<u32>().take(8).collect::<Vec<u32>>();
let mut ra: ChaChaRng = SeedableRng::from_seed(&*s);
let mut rb: ChaChaRng = SeedableRng::from_seed(&*s);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_seeded() {
let seed: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
let mut ra: ChaChaRng = SeedableRng::from_seed(seed);
let mut rb: ChaChaRng = SeedableRng::from_seed(seed);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_reseed() {
let s = ::test::rng().gen_iter::<u32>().take(8).collect::<Vec<u32>>();
let mut r: ChaChaRng = SeedableRng::from_seed(&*s);
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed(&s);
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
#[test]
#[rustfmt_skip]
fn test_rng_true_values() {
// Test vectors 1 and 2 from
// http://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed: &[_] = &[0; 8];
let mut ra: ChaChaRng = SeedableRng::from_seed(seed);
let v = (0..16).map(|_| ra.next_u32()).collect::<Vec<_>>();
assert_eq!(v,
vec![0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653,
0xb819d2bd, 0x1aed8da0, 0xccef36a8, 0xc70d778b,
0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8,
0xf4b8436a, 0x1ca11815, 0x69b687c3, 0x8665eeb2]);
let v = (0..16).map(|_| ra.next_u32()).collect::<Vec<_>>();
assert_eq!(v,
vec![0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73,
0xa0290fcb, 0x6965e348, 0x3e53c612, 0xed7aee32,
0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874,
0x281fed31, 0x45fb0a51, 0x1f0ae1ac, 0x6f4d794b]);
let seed: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7];
let mut ra: ChaChaRng = SeedableRng::from_seed(seed);
// Store the 17*i-th 32-bit word,
// i.e., the i-th word of the i-th 16-word block
let mut v: Vec<u32> = Vec::new();
for _ in 0..16 {
v.push(ra.next_u32());
for _ in 0..16 {
ra.next_u32();
}
}
assert_eq!(v,
vec![0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036,
0x49884684, 0x64efec72, 0x4be2d186, 0x3615b384,
0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530,
0x2c5bad8f, 0x898881dc, 0x5f1c86d9, 0xc1f8e7f4]);
}
#[test]
fn test_rng_clone() {
let seed: &[_] = &[0; 8];
let mut rng: ChaChaRng = SeedableRng::from_seed(seed);
let mut clone = rng.clone();
for _ in 0..16 {
assert_eq!(rng.next_u64(), clone.next_u64());
}
}
}

View File

@ -1,155 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The exponential distribution.
use core::fmt;
#[cfg(not(test))] // only necessary for no_std
use FloatMath;
use {Rand, Rng};
use distributions::{IndependentSample, Sample, ziggurat, ziggurat_tables};
/// A wrapper around an `f64` to generate Exp(1) random numbers.
///
/// See `Exp` for the general exponential distribution. Note that this has to
/// be unwrapped before use as an `f64` (using either `*` or `mem::transmute`
/// is safe).
///
/// Implemented via the ZIGNOR variant[1] of the Ziggurat method. The
/// exact description in the paper was adjusted to use tables for the
/// exponential distribution rather than normal.
///
/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random
/// Samples*](http://www.doornik.com/research/ziggurat.pdf). Nuffield
/// College, Oxford
#[derive(Copy, Clone)]
pub struct Exp1(pub f64);
// This could be done via `-rng.gen::<f64>().ln()` but that is slower.
impl Rand for Exp1 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Exp1 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x).exp()
}
#[inline]
fn zero_case<R: Rng>(rng: &mut R, _u: f64) -> f64 {
ziggurat_tables::ZIG_EXP_R - rng.gen::<f64>().ln()
}
Exp1(ziggurat(rng,
false,
&ziggurat_tables::ZIG_EXP_X,
&ziggurat_tables::ZIG_EXP_F,
pdf,
zero_case))
}
}
impl fmt::Debug for Exp1 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Exp1")
.field(&self.0)
.finish()
}
}
/// The exponential distribution `Exp(lambda)`.
///
/// This distribution has density function: `f(x) = lambda *
/// exp(-lambda * x)` for `x > 0`.
#[derive(Copy, Clone)]
pub struct Exp {
/// `lambda` stored as `1/lambda`, since this is what we scale by.
lambda_inverse: f64,
}
impl Exp {
/// Construct a new `Exp` with the given shape parameter
/// `lambda`. Panics if `lambda <= 0`.
pub fn new(lambda: f64) -> Exp {
assert!(lambda > 0.0, "Exp::new called with `lambda` <= 0");
Exp { lambda_inverse: 1.0 / lambda }
}
}
impl Sample<f64> for Exp {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for Exp {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Exp1(n) = rng.gen::<Exp1>();
n * self.lambda_inverse
}
}
impl fmt::Debug for Exp {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Exp")
.field("lambda_inverse", &self.lambda_inverse)
.finish()
}
}
#[cfg(test)]
mod tests {
use distributions::{IndependentSample, Sample};
use super::Exp;
#[test]
fn test_exp() {
let mut exp = Exp::new(10.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
assert!(exp.sample(&mut rng) >= 0.0);
assert!(exp.ind_sample(&mut rng) >= 0.0);
}
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_zero() {
Exp::new(0.0);
}
#[test]
#[should_panic]
fn test_exp_invalid_lambda_neg() {
Exp::new(-10.0);
}
}
#[cfg(test)]
mod bench {
extern crate test;
use self::test::Bencher;
use std::mem::size_of;
use super::Exp;
use distributions::Sample;
#[bench]
fn rand_exp(b: &mut Bencher) {
let mut rng = ::test::weak_rng();
let mut exp = Exp::new(2.71828 * 3.14159);
b.iter(|| {
for _ in 0..::RAND_BENCH_N {
exp.sample(&mut rng);
}
});
b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N;
}
}

View File

@ -1,439 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gamma and derived distributions.
use core::fmt;
use self::GammaRepr::*;
use self::ChiSquaredRepr::*;
#[cfg(not(test))] // only necessary for no_std
use FloatMath;
use {Open01, Rng};
use super::normal::StandardNormal;
use super::{Exp, IndependentSample, Sample};
/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in [1] for
/// `shape < 1`.
///
/// [1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method
/// for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000),
/// 363-372. DOI:[10.1145/358407.358414](http://doi.acm.org/10.1145/358407.358414)
pub struct Gamma {
repr: GammaRepr,
}
impl fmt::Debug for Gamma {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Gamma")
.field("repr",
&match self.repr {
GammaRepr::Large(_) => "Large",
GammaRepr::One(_) => "Exp",
GammaRepr::Small(_) => "Small"
})
.finish()
}
}
enum GammaRepr {
Large(GammaLargeShape),
One(Exp),
Small(GammaSmallShape),
}
// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.
/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
struct GammaSmallShape {
inv_shape: f64,
large_shape: GammaLargeShape,
}
/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
struct GammaLargeShape {
scale: f64,
c: f64,
d: f64,
}
impl Gamma {
/// Construct an object representing the `Gamma(shape, scale)`
/// distribution.
///
/// Panics if `shape <= 0` or `scale <= 0`.
pub fn new(shape: f64, scale: f64) -> Gamma {
assert!(shape > 0.0, "Gamma::new called with shape <= 0");
assert!(scale > 0.0, "Gamma::new called with scale <= 0");
let repr = if shape == 1.0 {
One(Exp::new(1.0 / scale))
} else if 0.0 <= shape && shape < 1.0 {
Small(GammaSmallShape::new_raw(shape, scale))
} else {
Large(GammaLargeShape::new_raw(shape, scale))
};
Gamma { repr }
}
}
impl GammaSmallShape {
fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
GammaSmallShape {
inv_shape: 1. / shape,
large_shape: GammaLargeShape::new_raw(shape + 1.0, scale),
}
}
}
impl GammaLargeShape {
fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
let d = shape - 1. / 3.;
GammaLargeShape {
scale,
c: 1. / (9. * d).sqrt(),
d,
}
}
}
impl Sample<f64> for Gamma {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl Sample<f64> for GammaSmallShape {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl Sample<f64> for GammaLargeShape {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for Gamma {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
match self.repr {
Small(ref g) => g.ind_sample(rng),
One(ref g) => g.ind_sample(rng),
Large(ref g) => g.ind_sample(rng),
}
}
}
impl IndependentSample<f64> for GammaSmallShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let Open01(u) = rng.gen::<Open01<f64>>();
self.large_shape.ind_sample(rng) * u.powf(self.inv_shape)
}
}
impl IndependentSample<f64> for GammaLargeShape {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
loop {
let StandardNormal(x) = rng.gen::<StandardNormal>();
let v_cbrt = 1.0 + self.c * x;
if v_cbrt <= 0.0 {
// a^3 <= 0 iff a <= 0
continue;
}
let v = v_cbrt * v_cbrt * v_cbrt;
let Open01(u) = rng.gen::<Open01<f64>>();
let x_sqr = x * x;
if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
return self.d * v * self.scale;
}
}
}
}
/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterization `χ²(k) = Gamma(k/2,
/// 2)`.
pub struct ChiSquared {
repr: ChiSquaredRepr,
}
impl fmt::Debug for ChiSquared {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ChiSquared")
.field("repr",
&match self.repr {
ChiSquaredRepr::DoFExactlyOne => "DoFExactlyOne",
ChiSquaredRepr::DoFAnythingElse(_) => "DoFAnythingElse",
})
.finish()
}
}
enum ChiSquaredRepr {
// k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
// e.g. when alpha = 1/2 as it would be for this case, so special-
// casing and using the definition of N(0,1)^2 is faster.
DoFExactlyOne,
DoFAnythingElse(Gamma),
}
impl ChiSquared {
/// Create a new chi-squared distribution with degrees-of-freedom
/// `k`. Panics if `k < 0`.
pub fn new(k: f64) -> ChiSquared {
let repr = if k == 1.0 {
DoFExactlyOne
} else {
assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
};
ChiSquared { repr: repr }
}
}
impl Sample<f64> for ChiSquared {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for ChiSquared {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
match self.repr {
DoFExactlyOne => {
// k == 1 => N(0,1)^2
let StandardNormal(norm) = rng.gen::<StandardNormal>();
norm * norm
}
DoFAnythingElse(ref g) => g.ind_sample(rng),
}
}
}
/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalized
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
pub struct FisherF {
numer: ChiSquared,
denom: ChiSquared,
// denom_dof / numer_dof so that this can just be a straight
// multiplication, rather than a division.
dof_ratio: f64,
}
impl FisherF {
/// Create a new `FisherF` distribution, with the given
/// parameter. Panics if either `m` or `n` are not positive.
pub fn new(m: f64, n: f64) -> FisherF {
assert!(m > 0.0, "FisherF::new called with `m < 0`");
assert!(n > 0.0, "FisherF::new called with `n < 0`");
FisherF {
numer: ChiSquared::new(m),
denom: ChiSquared::new(n),
dof_ratio: n / m,
}
}
}
impl Sample<f64> for FisherF {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for FisherF {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
self.numer.ind_sample(rng) / self.denom.ind_sample(rng) * self.dof_ratio
}
}
impl fmt::Debug for FisherF {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("FisherF")
.field("numer", &self.numer)
.field("denom", &self.denom)
.field("dof_ratio", &self.dof_ratio)
.finish()
}
}
/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
pub struct StudentT {
chi: ChiSquared,
dof: f64,
}
impl StudentT {
/// Create a new Student t distribution with `n` degrees of
/// freedom. Panics if `n <= 0`.
pub fn new(n: f64) -> StudentT {
assert!(n > 0.0, "StudentT::new called with `n <= 0`");
StudentT {
chi: ChiSquared::new(n),
dof: n,
}
}
}
impl Sample<f64> for StudentT {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for StudentT {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let StandardNormal(norm) = rng.gen::<StandardNormal>();
norm * (self.dof / self.chi.ind_sample(rng)).sqrt()
}
}
impl fmt::Debug for StudentT {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("StudentT")
.field("chi", &self.chi)
.field("dof", &self.dof)
.finish()
}
}
#[cfg(test)]
mod tests {
use distributions::{IndependentSample, Sample};
use super::{ChiSquared, FisherF, StudentT};
#[test]
fn test_chi_squared_one() {
let mut chi = ChiSquared::new(1.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let mut chi = ChiSquared::new(0.5);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let mut chi = ChiSquared::new(30.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
chi.sample(&mut rng);
chi.ind_sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0);
}
#[test]
fn test_f() {
let mut f = FisherF::new(2.0, 32.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
f.sample(&mut rng);
f.ind_sample(&mut rng);
}
}
#[test]
fn test_t() {
let mut t = StudentT::new(11.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
t.sample(&mut rng);
t.ind_sample(&mut rng);
}
}
}
#[cfg(test)]
mod bench {
extern crate test;
use self::test::Bencher;
use std::mem::size_of;
use distributions::IndependentSample;
use super::Gamma;
#[bench]
fn bench_gamma_large_shape(b: &mut Bencher) {
let gamma = Gamma::new(10., 1.0);
let mut rng = ::test::weak_rng();
b.iter(|| {
for _ in 0..::RAND_BENCH_N {
gamma.ind_sample(&mut rng);
}
});
b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N;
}
#[bench]
fn bench_gamma_small_shape(b: &mut Bencher) {
let gamma = Gamma::new(0.1, 1.0);
let mut rng = ::test::weak_rng();
b.iter(|| {
for _ in 0..::RAND_BENCH_N {
gamma.ind_sample(&mut rng);
}
});
b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N;
}
}

View File

@ -1,397 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Sampling from random distributions.
//!
//! This is a generalization of `Rand` to allow parameters to control the
//! exact properties of the generated values, e.g. the mean and standard
//! deviation of a normal distribution. The `Sample` trait is the most
//! general, and allows for generating values that change some state
//! internally. The `IndependentSample` trait is for generating values
//! that do not need to record state.
use core::fmt;
#[cfg(not(test))] // only necessary for no_std
use core::num::Float;
use core::marker::PhantomData;
use {Rand, Rng};
pub use self::range::Range;
pub use self::gamma::{ChiSquared, FisherF, Gamma, StudentT};
pub use self::normal::{LogNormal, Normal};
pub use self::exponential::Exp;
pub mod range;
pub mod gamma;
pub mod normal;
pub mod exponential;
/// Types that can be used to create a random instance of `Support`.
pub trait Sample<Support> {
/// Generate a random value of `Support`, using `rng` as the
/// source of randomness.
fn sample<R: Rng>(&mut self, rng: &mut R) -> Support;
}
/// `Sample`s that do not require keeping track of state.
///
/// Since no state is recorded, each sample is (statistically)
/// independent of all others, assuming the `Rng` used has this
/// property.
// FIXME maybe having this separate is overkill (the only reason is to
// take &self rather than &mut self)? or maybe this should be the
// trait called `Sample` and the other should be `DependentSample`.
pub trait IndependentSample<Support>: Sample<Support> {
/// Generate a random value.
fn ind_sample<R: Rng>(&self, _: &mut R) -> Support;
}
/// A wrapper for generating types that implement `Rand` via the
/// `Sample` & `IndependentSample` traits.
pub struct RandSample<Sup> {
_marker: PhantomData<Sup>,
}
impl<Sup> RandSample<Sup> {
pub fn new() -> RandSample<Sup> {
RandSample { _marker: PhantomData }
}
}
impl<Sup: Rand> Sample<Sup> for RandSample<Sup> {
fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup {
self.ind_sample(rng)
}
}
impl<Sup: Rand> IndependentSample<Sup> for RandSample<Sup> {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup {
rng.gen()
}
}
impl<Sup> fmt::Debug for RandSample<Sup> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("RandSample { .. }")
}
}
/// A value with a particular weight for use with `WeightedChoice`.
pub struct Weighted<T> {
/// The numerical weight of this item
pub weight: usize,
/// The actual item which is being weighted
pub item: T,
}
impl<T: fmt::Debug> fmt::Debug for Weighted<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Weighted")
.field("weight", &self.weight)
.field("item", &self.item)
.finish()
}
}
/// A distribution that selects from a finite collection of weighted items.
///
/// Each item has an associated weight that influences how likely it
/// is to be chosen: higher weight is more likely.
///
/// The `Clone` restriction is a limitation of the `Sample` and
/// `IndependentSample` traits. Note that `&T` is (cheaply) `Clone` for
/// all `T`, as is `usize`, so one can store references or indices into
/// another vector.
pub struct WeightedChoice<'a, T: 'a> {
items: &'a mut [Weighted<T>],
weight_range: Range<usize>,
}
impl<'a, T: Clone> WeightedChoice<'a, T> {
/// Create a new `WeightedChoice`.
///
/// Panics if:
/// - `v` is empty
/// - the total weight is 0
/// - the total weight is larger than a `usize` can contain.
pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
// strictly speaking, this is subsumed by the total weight == 0 case
assert!(!items.is_empty(),
"WeightedChoice::new called with no items");
let mut running_total = 0_usize;
// we convert the list from individual weights to cumulative
// weights so we can binary search. This *could* drop elements
// with weight == 0 as an optimisation.
for item in &mut *items {
running_total = match running_total.checked_add(item.weight) {
Some(n) => n,
None => {
panic!("WeightedChoice::new called with a total weight larger than a usize \
can contain")
}
};
item.weight = running_total;
}
assert!(running_total != 0,
"WeightedChoice::new called with a total weight of 0");
WeightedChoice {
items,
// we're likely to be generating numbers in this range
// relatively often, so might as well cache it
weight_range: Range::new(0, running_total),
}
}
}
impl<'a, T: Clone> Sample<T> for WeightedChoice<'a, T> {
fn sample<R: Rng>(&mut self, rng: &mut R) -> T {
self.ind_sample(rng)
}
}
impl<'a, T: Clone> IndependentSample<T> for WeightedChoice<'a, T> {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> T {
// we want to find the first element that has cumulative
// weight > sample_weight, which we do by binary since the
// cumulative weights of self.items are sorted.
// choose a weight in [0, total_weight)
let sample_weight = self.weight_range.ind_sample(rng);
// short circuit when it's the first item
if sample_weight < self.items[0].weight {
return self.items[0].item.clone();
}
let mut idx = 0;
let mut modifier = self.items.len();
// now we know that every possibility has an element to the
// left, so we can just search for the last element that has
// cumulative weight <= sample_weight, then the next one will
// be "it". (Note that this greatest element will never be the
// last element of the vector, since sample_weight is chosen
// in [0, total_weight) and the cumulative weight of the last
// one is exactly the total weight.)
while modifier > 1 {
let i = idx + modifier / 2;
if self.items[i].weight <= sample_weight {
// we're small, so look to the right, but allow this
// exact element still.
idx = i;
// we need the `/ 2` to round up otherwise we'll drop
// the trailing elements when `modifier` is odd.
modifier += 1;
} else {
// otherwise we're too big, so go left. (i.e. do
// nothing)
}
modifier /= 2;
}
return self.items[idx + 1].item.clone();
}
}
impl<'a, T: fmt::Debug> fmt::Debug for WeightedChoice<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("WeightedChoice")
.field("items", &self.items)
.field("weight_range", &self.weight_range)
.finish()
}
}
mod ziggurat_tables;
/// Sample a random number using the Ziggurat method (specifically the
/// ZIGNOR variant from Doornik 2005). Most of the arguments are
/// directly from the paper:
///
/// * `rng`: source of randomness
/// * `symmetric`: whether this is a symmetric distribution, or one-sided with P(x < 0) = 0.
/// * `X`: the $x_i$ abscissae.
/// * `F`: precomputed values of the PDF at the $x_i$, (i.e. $f(x_i)$)
/// * `F_DIFF`: precomputed values of $f(x_i) - f(x_{i+1})$
/// * `pdf`: the probability density function
/// * `zero_case`: manual sampling from the tail when we chose the
/// bottom box (i.e. i == 0)
// the perf improvement (25-50%) is definitely worth the extra code
// size from force-inlining.
#[inline(always)]
fn ziggurat<R: Rng, P, Z>(rng: &mut R,
symmetric: bool,
x_tab: ziggurat_tables::ZigTable,
f_tab: ziggurat_tables::ZigTable,
mut pdf: P,
mut zero_case: Z)
-> f64
where P: FnMut(f64) -> f64,
Z: FnMut(&mut R, f64) -> f64
{
const SCALE: f64 = (1u64 << 53) as f64;
loop {
// reimplement the f64 generation as an optimisation suggested
// by the Doornik paper: we have a lot of precision-space
// (i.e. there are 11 bits of the 64 of a u64 to use after
// creating a f64), so we might as well reuse some to save
// generating a whole extra random number. (Seems to be 15%
// faster.)
//
// This unfortunately misses out on the benefits of direct
// floating point generation if an RNG like dSMFT is
// used. (That is, such RNGs create floats directly, highly
// efficiently and overload next_f32/f64, so by not calling it
// this may be slower than it would be otherwise.)
// FIXME: investigate/optimise for the above.
let bits: u64 = rng.gen();
let i = (bits & 0xff) as usize;
let f = (bits >> 11) as f64 / SCALE;
// u is either U(-1, 1) or U(0, 1) depending on if this is a
// symmetric distribution or not.
let u = if symmetric { 2.0 * f - 1.0 } else { f };
let x = u * x_tab[i];
let test_x = if symmetric { x.abs() } else { x };
// algebraically equivalent to |u| < x_tab[i+1]/x_tab[i] (or u < x_tab[i+1]/x_tab[i])
if test_x < x_tab[i + 1] {
return x;
}
if i == 0 {
return zero_case(rng, u);
}
// algebraically equivalent to f1 + DRanU()*(f0 - f1) < 1
if f_tab[i + 1] + (f_tab[i] - f_tab[i + 1]) * rng.gen::<f64>() < pdf(x) {
return x;
}
}
}
#[cfg(test)]
mod tests {
use {Rand, Rng};
use super::{IndependentSample, RandSample, Sample, Weighted, WeightedChoice};
#[derive(PartialEq, Debug)]
struct ConstRand(usize);
impl Rand for ConstRand {
fn rand<R: Rng>(_: &mut R) -> ConstRand {
ConstRand(0)
}
}
// 0, 1, 2, 3, ...
struct CountingRng {
i: u32,
}
impl Rng for CountingRng {
fn next_u32(&mut self) -> u32 {
self.i += 1;
self.i - 1
}
fn next_u64(&mut self) -> u64 {
self.next_u32() as u64
}
}
#[test]
fn test_rand_sample() {
let mut rand_sample = RandSample::<ConstRand>::new();
assert_eq!(rand_sample.sample(&mut ::test::rng()), ConstRand(0));
assert_eq!(rand_sample.ind_sample(&mut ::test::rng()), ConstRand(0));
}
#[test]
#[rustfmt_skip]
fn test_weighted_choice() {
// this makes assumptions about the internal implementation of
// WeightedChoice, specifically: it doesn't reorder the items,
// it doesn't do weird things to the RNG (so 0 maps to 0, 1 to
// 1, internally; modulo a modulo operation).
macro_rules! t {
($items:expr, $expected:expr) => {{
let mut items = $items;
let wc = WeightedChoice::new(&mut items);
let expected = $expected;
let mut rng = CountingRng { i: 0 };
for &val in &expected {
assert_eq!(wc.ind_sample(&mut rng), val)
}
}}
}
t!(vec![Weighted { weight: 1, item: 10 }],
[10]);
// skip some
t!(vec![Weighted { weight: 0, item: 20 },
Weighted { weight: 2, item: 21 },
Weighted { weight: 0, item: 22 },
Weighted { weight: 1, item: 23 }],
[21, 21, 23]);
// different weights
t!(vec![Weighted { weight: 4, item: 30 },
Weighted { weight: 3, item: 31 }],
[30, 30, 30, 30, 31, 31, 31]);
// check that we're binary searching
// correctly with some vectors of odd
// length.
t!(vec![Weighted { weight: 1, item: 40 },
Weighted { weight: 1, item: 41 },
Weighted { weight: 1, item: 42 },
Weighted { weight: 1, item: 43 },
Weighted { weight: 1, item: 44 }],
[40, 41, 42, 43, 44]);
t!(vec![Weighted { weight: 1, item: 50 },
Weighted { weight: 1, item: 51 },
Weighted { weight: 1, item: 52 },
Weighted { weight: 1, item: 53 },
Weighted { weight: 1, item: 54 },
Weighted { weight: 1, item: 55 },
Weighted { weight: 1, item: 56 }],
[50, 51, 52, 53, 54, 55, 56]);
}
#[test]
#[should_panic]
fn test_weighted_choice_no_items() {
WeightedChoice::<isize>::new(&mut []);
}
#[test]
#[should_panic]
#[rustfmt_skip]
fn test_weighted_choice_zero_weight() {
WeightedChoice::new(&mut [Weighted { weight: 0, item: 0 },
Weighted { weight: 0, item: 1 }]);
}
#[test]
#[should_panic]
#[rustfmt_skip]
fn test_weighted_choice_weight_overflows() {
let x = (!0) as usize / 2; // x + x + 2 is the overflow
WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
Weighted { weight: 1, item: 1 },
Weighted { weight: x, item: 2 },
Weighted { weight: 1, item: 3 }]);
}
}

View File

@ -1,234 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The normal and derived distributions.
use core::fmt;
#[cfg(not(test))] // only necessary for no_std
use FloatMath;
use {Open01, Rand, Rng};
use distributions::{IndependentSample, Sample, ziggurat, ziggurat_tables};
/// A wrapper around an `f64` to generate N(0, 1) random numbers
/// (a.k.a. a standard normal, or Gaussian).
///
/// See `Normal` for the general normal distribution. That this has to
/// be unwrapped before use as an `f64` (using either `*` or
/// `mem::transmute` is safe).
///
/// Implemented via the ZIGNOR variant[1] of the Ziggurat method.
///
/// [1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random
/// Samples*](http://www.doornik.com/research/ziggurat.pdf). Nuffield
/// College, Oxford
#[derive(Copy, Clone)]
pub struct StandardNormal(pub f64);
impl Rand for StandardNormal {
fn rand<R: Rng>(rng: &mut R) -> StandardNormal {
#[inline]
fn pdf(x: f64) -> f64 {
(-x * x / 2.0).exp()
}
#[inline]
fn zero_case<R: Rng>(rng: &mut R, u: f64) -> f64 {
// compute a random number in the tail by hand
// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0f64;
let mut y = 0.0f64;
while -2.0 * y < x * x {
let Open01(x_) = rng.gen::<Open01<f64>>();
let Open01(y_) = rng.gen::<Open01<f64>>();
x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
y = y_.ln();
}
if u < 0.0 {
x - ziggurat_tables::ZIG_NORM_R
} else {
ziggurat_tables::ZIG_NORM_R - x
}
}
StandardNormal(ziggurat(rng,
true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F,
pdf,
zero_case))
}
}
impl fmt::Debug for StandardNormal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("StandardNormal")
.field(&self.0)
.finish()
}
}
/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see
/// `StandardNormal` for more details.
#[derive(Copy, Clone)]
pub struct Normal {
mean: f64,
std_dev: f64,
}
impl Normal {
/// Construct a new `Normal` distribution with the given mean and
/// standard deviation.
///
/// # Panics
///
/// Panics if `std_dev < 0`.
pub fn new(mean: f64, std_dev: f64) -> Normal {
assert!(std_dev >= 0.0, "Normal::new called with `std_dev` < 0");
Normal {
mean,
std_dev,
}
}
}
impl Sample<f64> for Normal {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for Normal {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
let StandardNormal(n) = rng.gen::<StandardNormal>();
self.mean + self.std_dev * n
}
}
impl fmt::Debug for Normal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Normal")
.field("mean", &self.mean)
.field("std_dev", &self.std_dev)
.finish()
}
}
/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean,
/// std_dev**2)` distributed.
#[derive(Copy, Clone)]
pub struct LogNormal {
norm: Normal,
}
impl LogNormal {
/// Construct a new `LogNormal` distribution with the given mean
/// and standard deviation.
///
/// # Panics
///
/// Panics if `std_dev < 0`.
pub fn new(mean: f64, std_dev: f64) -> LogNormal {
assert!(std_dev >= 0.0, "LogNormal::new called with `std_dev` < 0");
LogNormal { norm: Normal::new(mean, std_dev) }
}
}
impl Sample<f64> for LogNormal {
fn sample<R: Rng>(&mut self, rng: &mut R) -> f64 {
self.ind_sample(rng)
}
}
impl IndependentSample<f64> for LogNormal {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> f64 {
self.norm.ind_sample(rng).exp()
}
}
impl fmt::Debug for LogNormal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("LogNormal")
.field("norm", &self.norm)
.finish()
}
}
#[cfg(test)]
mod tests {
use distributions::{IndependentSample, Sample};
use super::{LogNormal, Normal};
#[test]
fn test_normal() {
let mut norm = Normal::new(10.0, 10.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
norm.sample(&mut rng);
norm.ind_sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_normal_invalid_sd() {
Normal::new(10.0, -1.0);
}
#[test]
fn test_log_normal() {
let mut lnorm = LogNormal::new(10.0, 10.0);
let mut rng = ::test::rng();
for _ in 0..1000 {
lnorm.sample(&mut rng);
lnorm.ind_sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_log_normal_invalid_sd() {
LogNormal::new(10.0, -1.0);
}
}
#[cfg(test)]
mod bench {
extern crate test;
use self::test::Bencher;
use std::mem::size_of;
use distributions::Sample;
use super::Normal;
#[bench]
fn rand_normal(b: &mut Bencher) {
let mut rng = ::test::weak_rng();
let mut normal = Normal::new(-2.71828, 3.14159);
b.iter(|| {
for _ in 0..::RAND_BENCH_N {
normal.sample(&mut rng);
}
});
b.bytes = size_of::<f64>() as u64 * ::RAND_BENCH_N;
}
}

View File

@ -1,227 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generating numbers between two others.
// this is surprisingly complicated to be both generic & correct
use core::fmt;
use core::marker::Sized;
use Rng;
use distributions::{IndependentSample, Sample};
/// Sample values uniformly between two bounds.
///
/// This gives a uniform distribution (assuming the RNG used to sample
/// it is itself uniform & the `SampleRange` implementation for the
/// given type is correct), even for edge cases like `low = 0`,
/// `high = 170`, for which a naive modulo operation would return
/// numbers less than 85 with double the probability to those greater
/// than 85.
///
/// Types should attempt to sample in `[low, high)`, i.e., not
/// including `high`, but this may be very difficult. All the
/// primitive integer types satisfy this property, and the float types
/// normally satisfy it, but rounding may mean `high` can occur.
pub struct Range<X> {
low: X,
range: X,
accept_zone: X,
}
impl<X: SampleRange + PartialOrd> Range<X> {
/// Create a new `Range` instance that samples uniformly from
/// `[low, high)`. Panics if `low >= high`.
pub fn new(low: X, high: X) -> Range<X> {
assert!(low < high, "Range::new called with `low >= high`");
SampleRange::construct_range(low, high)
}
}
impl<Sup: SampleRange> Sample<Sup> for Range<Sup> {
#[inline]
fn sample<R: Rng>(&mut self, rng: &mut R) -> Sup {
self.ind_sample(rng)
}
}
impl<Sup: SampleRange> IndependentSample<Sup> for Range<Sup> {
fn ind_sample<R: Rng>(&self, rng: &mut R) -> Sup {
SampleRange::sample_range(self, rng)
}
}
impl<X: fmt::Debug> fmt::Debug for Range<X> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Range")
.field("low", &self.low)
.field("range", &self.range)
.field("accept_zone", &self.accept_zone)
.finish()
}
}
/// The helper trait for types that have a sensible way to sample
/// uniformly between two values. This should not be used directly,
/// and is only to facilitate `Range`.
#[doc(hidden)]
pub trait SampleRange: Sized {
/// Construct the `Range` object that `sample_range`
/// requires. This should not ever be called directly, only via
/// `Range::new`, which will check that `low < high`, so this
/// function doesn't have to repeat the check.
fn construct_range(low: Self, high: Self) -> Range<Self>;
/// Sample a value from the given `Range` with the given `Rng` as
/// a source of randomness.
fn sample_range<R: Rng>(r: &Range<Self>, rng: &mut R) -> Self;
}
macro_rules! integer_impl {
($ty:ident, $unsigned:ident) => {
impl SampleRange for $ty {
// we play free and fast with unsigned vs signed here
// (when $ty is signed), but that's fine, since the
// contract of this macro is for $ty and $unsigned to be
// "bit-equal", so casting between them is a no-op & a
// bijection.
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
let range = (high as $unsigned).wrapping_sub(low as $unsigned);
let unsigned_max: $unsigned = $unsigned::max_value();
// this is the largest number that fits into $unsigned
// that `range` divides evenly, so, if we've sampled
// `n` uniformly from this region, then `n % range` is
// uniform in [0, range)
let zone = unsigned_max - unsigned_max % range;
Range {
low,
range: range as $ty,
accept_zone: zone as $ty
}
}
#[inline]
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
loop {
// rejection sample
let v = rng.gen::<$unsigned>();
// until we find something that fits into the
// region which r.range evenly divides (this will
// be uniformly distributed)
if v < r.accept_zone as $unsigned {
// and return it, with some adjustments
return r.low.wrapping_add((v % r.range as $unsigned) as $ty);
}
}
}
}
}
}
integer_impl! { i8, u8 }
integer_impl! { i16, u16 }
integer_impl! { i32, u32 }
integer_impl! { i64, u64 }
integer_impl! { isize, usize }
integer_impl! { u8, u8 }
integer_impl! { u16, u16 }
integer_impl! { u32, u32 }
integer_impl! { u64, u64 }
integer_impl! { usize, usize }
macro_rules! float_impl {
($ty:ty) => {
impl SampleRange for $ty {
fn construct_range(low: $ty, high: $ty) -> Range<$ty> {
Range {
low,
range: high - low,
accept_zone: 0.0 // unused
}
}
fn sample_range<R: Rng>(r: &Range<$ty>, rng: &mut R) -> $ty {
r.low + r.range * rng.gen::<$ty>()
}
}
}
}
float_impl! { f32 }
float_impl! { f64 }
#[cfg(test)]
mod tests {
use distributions::{IndependentSample, Sample};
use super::Range;
#[should_panic]
#[test]
fn test_range_bad_limits_equal() {
Range::new(10, 10);
}
#[should_panic]
#[test]
fn test_range_bad_limits_flipped() {
Range::new(10, 5);
}
#[test]
fn test_integers() {
let mut rng = ::test::rng();
macro_rules! t {
($($ty:ident),*) => {{
$(
let v: &[($ty, $ty)] = &[(0, 10),
(10, 127),
($ty::min_value(), $ty::max_value())];
for &(low, high) in v {
let mut sampler: Range<$ty> = Range::new(low, high);
for _ in 0..1000 {
let v = sampler.sample(&mut rng);
assert!(low <= v && v < high);
let v = sampler.ind_sample(&mut rng);
assert!(low <= v && v < high);
}
}
)*
}}
}
t!(i8, i16, i32, i64, isize, u8, u16, u32, u64, usize)
}
#[test]
fn test_floats() {
let mut rng = ::test::rng();
macro_rules! t {
($($ty:ty),*) => {{
$(
let v: &[($ty, $ty)] = &[(0.0, 100.0),
(-1e35, -1e25),
(1e-35, 1e-25),
(-1e35, 1e35)];
for &(low, high) in v {
let mut sampler: Range<$ty> = Range::new(low, high);
for _ in 0..1000 {
let v = sampler.sample(&mut rng);
assert!(low <= v && v < high);
let v = sampler.ind_sample(&mut rng);
assert!(low <= v && v < high);
}
}
)*
}}
}
t!(f32, f64)
}
}

View File

@ -1,284 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Tables for distributions which are sampled using the ziggurat
// algorithm. Autogenerated by `ziggurat_tables.py`.
pub type ZigTable = &'static [f64; 257];
pub const ZIG_NORM_R: f64 = 3.654152885361008796;
#[rustfmt_skip]
pub static ZIG_NORM_X: [f64; 257] =
[3.910757959537090045, 3.654152885361008796, 3.449278298560964462, 3.320244733839166074,
3.224575052047029100, 3.147889289517149969, 3.083526132001233044, 3.027837791768635434,
2.978603279880844834, 2.934366867207854224, 2.894121053612348060, 2.857138730872132548,
2.822877396825325125, 2.790921174000785765, 2.760944005278822555, 2.732685359042827056,
2.705933656121858100, 2.680514643284522158, 2.656283037575502437, 2.633116393630324570,
2.610910518487548515, 2.589575986706995181, 2.569035452680536569, 2.549221550323460761,
2.530075232158516929, 2.511544441625342294, 2.493583041269680667, 2.476149939669143318,
2.459208374333311298, 2.442725318198956774, 2.426670984935725972, 2.411018413899685520,
2.395743119780480601, 2.380822795170626005, 2.366237056715818632, 2.351967227377659952,
2.337996148795031370, 2.324308018869623016, 2.310888250599850036, 2.297723348901329565,
2.284800802722946056, 2.272108990226823888, 2.259637095172217780, 2.247375032945807760,
2.235313384928327984, 2.223443340090905718, 2.211756642882544366, 2.200245546609647995,
2.188902771624720689, 2.177721467738641614, 2.166695180352645966, 2.155817819875063268,
2.145083634046203613, 2.134487182844320152, 2.124023315687815661, 2.113687150684933957,
2.103474055713146829, 2.093379631137050279, 2.083399693996551783, 2.073530263516978778,
2.063767547809956415, 2.054107931648864849, 2.044547965215732788, 2.035084353727808715,
2.025713947862032960, 2.016433734904371722, 2.007240830558684852, 1.998132471356564244,
1.989106007615571325, 1.980158896898598364, 1.971288697931769640, 1.962493064942461896,
1.953769742382734043, 1.945116560006753925, 1.936531428273758904, 1.928012334050718257,
1.919557336591228847, 1.911164563769282232, 1.902832208548446369, 1.894558525668710081,
1.886341828534776388, 1.878180486290977669, 1.870072921069236838, 1.862017605397632281,
1.854013059758148119, 1.846057850283119750, 1.838150586580728607, 1.830289919680666566,
1.822474540091783224, 1.814703175964167636, 1.806974591348693426, 1.799287584547580199,
1.791640986550010028, 1.784033659547276329, 1.776464495522344977, 1.768932414909077933,
1.761436365316706665, 1.753975320315455111, 1.746548278279492994, 1.739154261283669012,
1.731792314050707216, 1.724461502945775715, 1.717160915015540690, 1.709889657069006086,
1.702646854797613907, 1.695431651932238548, 1.688243209434858727, 1.681080704722823338,
1.673943330923760353, 1.666830296159286684, 1.659740822855789499, 1.652674147080648526,
1.645629517902360339, 1.638606196773111146, 1.631603456932422036, 1.624620582830568427,
1.617656869570534228, 1.610711622367333673, 1.603784156023583041, 1.596873794420261339,
1.589979870021648534, 1.583101723393471438, 1.576238702733332886, 1.569390163412534456,
1.562555467528439657, 1.555733983466554893, 1.548925085471535512, 1.542128153226347553,
1.535342571438843118, 1.528567729435024614, 1.521803020758293101, 1.515047842773992404,
1.508301596278571965, 1.501563685112706548, 1.494833515777718391, 1.488110497054654369,
1.481394039625375747, 1.474683555695025516, 1.467978458615230908, 1.461278162507407830,
1.454582081885523293, 1.447889631277669675, 1.441200224845798017, 1.434513276002946425,
1.427828197027290358, 1.421144398672323117, 1.414461289772464658, 1.407778276843371534,
1.401094763676202559, 1.394410150925071257, 1.387723835686884621, 1.381035211072741964,
1.374343665770030531, 1.367648583594317957, 1.360949343030101844, 1.354245316759430606,
1.347535871177359290, 1.340820365893152122, 1.334098153216083604, 1.327368577624624679,
1.320630975217730096, 1.313884673146868964, 1.307128989027353860, 1.300363230327433728,
1.293586693733517645, 1.286798664489786415, 1.279998415710333237, 1.273185207661843732,
1.266358287014688333, 1.259516886060144225, 1.252660221891297887, 1.245787495544997903,
1.238897891102027415, 1.231990574742445110, 1.225064693752808020, 1.218119375481726552,
1.211153726239911244, 1.204166830140560140, 1.197157747875585931, 1.190125515422801650,
1.183069142678760732, 1.175987612011489825, 1.168879876726833800, 1.161744859441574240,
1.154581450355851802, 1.147388505416733873, 1.140164844363995789, 1.132909248648336975,
1.125620459211294389, 1.118297174115062909, 1.110938046009249502, 1.103541679420268151,
1.096106627847603487, 1.088631390649514197, 1.081114409698889389, 1.073554065787871714,
1.065948674757506653, 1.058296483326006454, 1.050595664586207123, 1.042844313139370538,
1.035040439828605274, 1.027181966030751292, 1.019266717460529215, 1.011292417434978441,
1.003256679539591412, 0.995156999629943084, 0.986990747093846266, 0.978755155288937750,
0.970447311058864615, 0.962064143217605250, 0.953602409875572654, 0.945058684462571130,
0.936429340280896860, 0.927710533396234771, 0.918898183643734989, 0.909987953490768997,
0.900975224455174528, 0.891855070726792376, 0.882622229578910122, 0.873271068082494550,
0.863795545546826915, 0.854189171001560554, 0.844444954902423661, 0.834555354079518752,
0.824512208745288633, 0.814306670128064347, 0.803929116982664893, 0.793369058833152785,
0.782615023299588763, 0.771654424216739354, 0.760473406422083165, 0.749056662009581653,
0.737387211425838629, 0.725446140901303549, 0.713212285182022732, 0.700661841097584448,
0.687767892786257717, 0.674499822827436479, 0.660822574234205984, 0.646695714884388928,
0.632072236375024632, 0.616896989996235545, 0.601104617743940417, 0.584616766093722262,
0.567338257040473026, 0.549151702313026790, 0.529909720646495108, 0.509423329585933393,
0.487443966121754335, 0.463634336771763245, 0.437518402186662658, 0.408389134588000746,
0.375121332850465727, 0.335737519180459465, 0.286174591747260509, 0.215241895913273806,
0.000000000000000000];
#[rustfmt_skip]
pub static ZIG_NORM_F: [f64; 257] =
[0.000477467764586655, 0.001260285930498598, 0.002609072746106363, 0.004037972593371872,
0.005522403299264754, 0.007050875471392110, 0.008616582769422917, 0.010214971439731100,
0.011842757857943104, 0.013497450601780807, 0.015177088307982072, 0.016880083152595839,
0.018605121275783350, 0.020351096230109354, 0.022117062707379922, 0.023902203305873237,
0.025705804008632656, 0.027527235669693315, 0.029365939758230111, 0.031221417192023690,
0.033093219458688698, 0.034980941461833073, 0.036884215688691151, 0.038802707404656918,
0.040736110656078753, 0.042684144916619378, 0.044646552251446536, 0.046623094902089664,
0.048613553216035145, 0.050617723861121788, 0.052635418276973649, 0.054666461325077916,
0.056710690106399467, 0.058767952921137984, 0.060838108349751806, 0.062921024437977854,
0.065016577971470438, 0.067124653828023989, 0.069245144397250269, 0.071377949059141965,
0.073522973714240991, 0.075680130359194964, 0.077849336702372207, 0.080030515814947509,
0.082223595813495684, 0.084428509570654661, 0.086645194450867782, 0.088873592068594229,
0.091113648066700734, 0.093365311913026619, 0.095628536713353335, 0.097903279039215627,
0.100189498769172020, 0.102487158942306270, 0.104796225622867056, 0.107116667775072880,
0.109448457147210021, 0.111791568164245583, 0.114145977828255210, 0.116511665626037014,
0.118888613443345698, 0.121276805485235437, 0.123676228202051403, 0.126086870220650349,
0.128508722280473636, 0.130941777174128166, 0.133386029692162844, 0.135841476571757352,
0.138308116449064322, 0.140785949814968309, 0.143274978974047118, 0.145775208006537926,
0.148286642733128721, 0.150809290682410169, 0.153343161060837674, 0.155888264725064563,
0.158444614156520225, 0.161012223438117663, 0.163591108232982951, 0.166181285765110071,
0.168782774801850333, 0.171395595638155623, 0.174019770082499359, 0.176655321444406654,
0.179302274523530397, 0.181960655600216487, 0.184630492427504539, 0.187311814224516926,
0.190004651671193070, 0.192709036904328807, 0.195425003514885592, 0.198152586546538112,
0.200891822495431333, 0.203642749311121501, 0.206405406398679298, 0.209179834621935651,
0.211966076307852941, 0.214764175252008499, 0.217574176725178370, 0.220396127481011589,
0.223230075764789593, 0.226076071323264877, 0.228934165415577484, 0.231804410825248525,
0.234686861873252689, 0.237581574432173676, 0.240488605941449107, 0.243408015423711988,
0.246339863502238771, 0.249284212419516704, 0.252241126056943765, 0.255210669955677150,
0.258192911338648023, 0.261187919133763713, 0.264195763998317568, 0.267216518344631837,
0.270250256366959984, 0.273297054069675804, 0.276356989296781264, 0.279430141762765316,
0.282516593084849388, 0.285616426816658109, 0.288729728483353931, 0.291856585618280984,
0.294997087801162572, 0.298151326697901342, 0.301319396102034120, 0.304501391977896274,
0.307697412505553769, 0.310907558127563710, 0.314131931597630143, 0.317370638031222396,
0.320623784958230129, 0.323891482377732021, 0.327173842814958593, 0.330470981380537099,
0.333783015832108509, 0.337110066638412809, 0.340452257045945450, 0.343809713148291340,
0.347182563958251478, 0.350570941482881204, 0.353974980801569250, 0.357394820147290515,
0.360830600991175754, 0.364282468130549597, 0.367750569780596226, 0.371235057669821344,
0.374736087139491414, 0.378253817247238111, 0.381788410875031348, 0.385340034841733958,
0.388908860020464597, 0.392495061461010764, 0.396098818517547080, 0.399720314981931668,
0.403359739222868885, 0.407017284331247953, 0.410693148271983222, 0.414387534042706784,
0.418100649839684591, 0.421832709231353298, 0.425583931339900579, 0.429354541031341519,
0.433144769114574058, 0.436954852549929273, 0.440785034667769915, 0.444635565397727750,
0.448506701509214067, 0.452398706863882505, 0.456311852680773566, 0.460246417814923481,
0.464202689050278838, 0.468180961407822172, 0.472181538469883255, 0.476204732721683788,
0.480250865911249714, 0.484320269428911598, 0.488413284707712059, 0.492530263646148658,
0.496671569054796314, 0.500837575128482149, 0.505028667945828791, 0.509245245998136142,
0.513487720749743026, 0.517756517232200619, 0.522052074674794864, 0.526374847174186700,
0.530725304406193921, 0.535103932383019565, 0.539511234259544614, 0.543947731192649941,
0.548413963257921133, 0.552910490428519918, 0.557437893621486324, 0.561996775817277916,
0.566587763258951771, 0.571211506738074970, 0.575868682975210544, 0.580559996103683473,
0.585286179266300333, 0.590047996335791969, 0.594846243770991268, 0.599681752622167719,
0.604555390700549533, 0.609468064928895381, 0.614420723892076803, 0.619414360609039205,
0.624450015550274240, 0.629528779928128279, 0.634651799290960050, 0.639820277456438991,
0.645035480824251883, 0.650298743114294586, 0.655611470583224665, 0.660975147780241357,
0.666391343912380640, 0.671861719900766374, 0.677388036222513090, 0.682972161648791376,
0.688616083008527058, 0.694321916130032579, 0.700091918140490099, 0.705928501336797409,
0.711834248882358467, 0.717811932634901395, 0.723864533472881599, 0.729995264565802437,
0.736207598131266683, 0.742505296344636245, 0.748892447223726720, 0.755373506511754500,
0.761953346841546475, 0.768637315803334831, 0.775431304986138326, 0.782341832659861902,
0.789376143571198563, 0.796542330428254619, 0.803849483176389490, 0.811307874318219935,
0.818929191609414797, 0.826726833952094231, 0.834716292992930375, 0.842915653118441077,
0.851346258465123684, 0.860033621203008636, 0.869008688043793165, 0.878309655816146839,
0.887984660763399880, 0.898095921906304051, 0.908726440060562912, 0.919991505048360247,
0.932060075968990209, 0.945198953453078028, 0.959879091812415930, 0.977101701282731328,
1.000000000000000000];
pub const ZIG_EXP_R: f64 = 7.697117470131050077;
#[rustfmt_skip]
pub static ZIG_EXP_X: [f64; 257] =
[8.697117470131052741, 7.697117470131050077, 6.941033629377212577, 6.478378493832569696,
6.144164665772472667, 5.882144315795399869, 5.666410167454033697, 5.482890627526062488,
5.323090505754398016, 5.181487281301500047, 5.054288489981304089, 4.938777085901250530,
4.832939741025112035, 4.735242996601741083, 4.644491885420085175, 4.559737061707351380,
4.480211746528421912, 4.405287693473573185, 4.334443680317273007, 4.267242480277365857,
4.203313713735184365, 4.142340865664051464, 4.084051310408297830, 4.028208544647936762,
3.974606066673788796, 3.923062500135489739, 3.873417670399509127, 3.825529418522336744,
3.779270992411667862, 3.734528894039797375, 3.691201090237418825, 3.649195515760853770,
3.608428813128909507, 3.568825265648337020, 3.530315889129343354, 3.492837654774059608,
3.456332821132760191, 3.420748357251119920, 3.386035442460300970, 3.352149030900109405,
3.319047470970748037, 3.286692171599068679, 3.255047308570449882, 3.224079565286264160,
3.193757903212240290, 3.164053358025972873, 3.134938858084440394, 3.106389062339824481,
3.078380215254090224, 3.050890016615455114, 3.023897504455676621, 2.997382949516130601,
2.971327759921089662, 2.945714394895045718, 2.920526286512740821, 2.895747768600141825,
2.871364012015536371, 2.847360965635188812, 2.823725302450035279, 2.800444370250737780,
2.777506146439756574, 2.754899196562344610, 2.732612636194700073, 2.710636095867928752,
2.688959688741803689, 2.667573980773266573, 2.646469963151809157, 2.625639026797788489,
2.605072938740835564, 2.584763820214140750, 2.564704126316905253, 2.544886627111869970,
2.525304390037828028, 2.505950763528594027, 2.486819361740209455, 2.467904050297364815,
2.449198932978249754, 2.430698339264419694, 2.412396812688870629, 2.394289099921457886,
2.376370140536140596, 2.358635057409337321, 2.341079147703034380, 2.323697874390196372,
2.306486858283579799, 2.289441870532269441, 2.272558825553154804, 2.255833774367219213,
2.239262898312909034, 2.222842503111036816, 2.206569013257663858, 2.190438966723220027,
2.174449009937774679, 2.158595893043885994, 2.142876465399842001, 2.127287671317368289,
2.111826546019042183, 2.096490211801715020, 2.081275874393225145, 2.066180819490575526,
2.051202409468584786, 2.036338080248769611, 2.021585338318926173, 2.006941757894518563,
1.992404978213576650, 1.977972700957360441, 1.963642687789548313, 1.949412758007184943,
1.935280786297051359, 1.921244700591528076, 1.907302480018387536, 1.893452152939308242,
1.879691795072211180, 1.866019527692827973, 1.852433515911175554, 1.838931967018879954,
1.825513128903519799, 1.812175288526390649, 1.798916770460290859, 1.785735935484126014,
1.772631179231305643, 1.759600930889074766, 1.746643651946074405, 1.733757834985571566,
1.720942002521935299, 1.708194705878057773, 1.695514524101537912, 1.682900062917553896,
1.670349953716452118, 1.657862852574172763, 1.645437439303723659, 1.633072416535991334,
1.620766508828257901, 1.608518461798858379, 1.596327041286483395, 1.584191032532688892,
1.572109239386229707, 1.560080483527888084, 1.548103603714513499, 1.536177455041032092,
1.524300908219226258, 1.512472848872117082, 1.500692176842816750, 1.488957805516746058,
1.477268661156133867, 1.465623682245745352, 1.454021818848793446, 1.442462031972012504,
1.430943292938879674, 1.419464582769983219, 1.408024891569535697, 1.396623217917042137,
1.385258568263121992, 1.373929956328490576, 1.362636402505086775, 1.351376933258335189,
1.340150580529504643, 1.328956381137116560, 1.317793376176324749, 1.306660610415174117,
1.295557131686601027, 1.284481990275012642, 1.273434238296241139, 1.262412929069615330,
1.251417116480852521, 1.240445854334406572, 1.229498195693849105, 1.218573192208790124,
1.207669893426761121, 1.196787346088403092, 1.185924593404202199, 1.175080674310911677,
1.164254622705678921, 1.153445466655774743, 1.142652227581672841, 1.131873919411078511,
1.121109547701330200, 1.110358108727411031, 1.099618588532597308, 1.088889961938546813,
1.078171191511372307, 1.067461226479967662, 1.056759001602551429, 1.046063435977044209,
1.035373431790528542, 1.024687873002617211, 1.014005623957096480, 1.003325527915696735,
0.992646405507275897, 0.981967053085062602, 0.971286240983903260, 0.960602711668666509,
0.949915177764075969, 0.939222319955262286, 0.928522784747210395, 0.917815182070044311,
0.907098082715690257, 0.896370015589889935, 0.885629464761751528, 0.874874866291025066,
0.864104604811004484, 0.853317009842373353, 0.842510351810368485, 0.831682837734273206,
0.820832606554411814, 0.809957724057418282, 0.799056177355487174, 0.788125868869492430,
0.777164609759129710, 0.766170112735434672, 0.755139984181982249, 0.744071715500508102,
0.732962673584365398, 0.721810090308756203, 0.710611050909655040, 0.699362481103231959,
0.688061132773747808, 0.676703568029522584, 0.665286141392677943, 0.653804979847664947,
0.642255960424536365, 0.630634684933490286, 0.618936451394876075, 0.607156221620300030,
0.595288584291502887, 0.583327712748769489, 0.571267316532588332, 0.559100585511540626,
0.546820125163310577, 0.534417881237165604, 0.521885051592135052, 0.509211982443654398,
0.496388045518671162, 0.483401491653461857, 0.470239275082169006, 0.456886840931420235,
0.443327866073552401, 0.429543940225410703, 0.415514169600356364, 0.401214678896277765,
0.386617977941119573, 0.371692145329917234, 0.356399760258393816, 0.340696481064849122,
0.324529117016909452, 0.307832954674932158, 0.290527955491230394, 0.272513185478464703,
0.253658363385912022, 0.233790483059674731, 0.212671510630966620, 0.189958689622431842,
0.165127622564187282, 0.137304980940012589, 0.104838507565818778, 0.063852163815001570,
0.000000000000000000];
#[rustfmt_skip]
pub static ZIG_EXP_F: [f64; 257] =
[0.000167066692307963, 0.000454134353841497, 0.000967269282327174, 0.001536299780301573,
0.002145967743718907, 0.002788798793574076, 0.003460264777836904, 0.004157295120833797,
0.004877655983542396, 0.005619642207205489, 0.006381905937319183, 0.007163353183634991,
0.007963077438017043, 0.008780314985808977, 0.009614413642502212, 0.010464810181029981,
0.011331013597834600, 0.012212592426255378, 0.013109164931254991, 0.014020391403181943,
0.014945968011691148, 0.015885621839973156, 0.016839106826039941, 0.017806200410911355,
0.018786700744696024, 0.019780424338009740, 0.020787204072578114, 0.021806887504283581,
0.022839335406385240, 0.023884420511558174, 0.024942026419731787, 0.026012046645134221,
0.027094383780955803, 0.028188948763978646, 0.029295660224637411, 0.030414443910466622,
0.031545232172893622, 0.032687963508959555, 0.033842582150874358, 0.035009037697397431,
0.036187284781931443, 0.037377282772959382, 0.038578995503074871, 0.039792391023374139,
0.041017441380414840, 0.042254122413316254, 0.043502413568888197, 0.044762297732943289,
0.046033761076175184, 0.047316792913181561, 0.048611385573379504, 0.049917534282706379,
0.051235237055126281, 0.052564494593071685, 0.053905310196046080, 0.055257689676697030,
0.056621641283742870, 0.057997175631200659, 0.059384305633420280, 0.060783046445479660,
0.062193415408541036, 0.063615431999807376, 0.065049117786753805, 0.066494496385339816,
0.067951593421936643, 0.069420436498728783, 0.070901055162371843, 0.072393480875708752,
0.073897746992364746, 0.075413888734058410, 0.076941943170480517, 0.078481949201606435,
0.080033947542319905, 0.081597980709237419, 0.083174093009632397, 0.084762330532368146,
0.086362741140756927, 0.087975374467270231, 0.089600281910032886, 0.091237516631040197,
0.092887133556043569, 0.094549189376055873, 0.096223742550432825, 0.097910853311492213,
0.099610583670637132, 0.101322997425953631, 0.103048160171257702, 0.104786139306570145,
0.106537004050001632, 0.108300825451033755, 0.110077676405185357, 0.111867631670056283,
0.113670767882744286, 0.115487163578633506, 0.117316899211555525, 0.119160057175327641,
0.121016721826674792, 0.122886979509545108, 0.124770918580830933, 0.126668629437510671,
0.128580204545228199, 0.130505738468330773, 0.132445327901387494, 0.134399071702213602,
0.136367070926428829, 0.138349428863580176, 0.140346251074862399, 0.142357645432472146,
0.144383722160634720, 0.146424593878344889, 0.148480375643866735, 0.150551185001039839,
0.152637142027442801, 0.154738369384468027, 0.156854992369365148, 0.158987138969314129,
0.161134939917591952, 0.163298528751901734, 0.165478041874935922, 0.167673618617250081,
0.169885401302527550, 0.172113535315319977, 0.174358169171353411, 0.176619454590494829,
0.178897546572478278, 0.181192603475496261, 0.183504787097767436, 0.185834262762197083,
0.188181199404254262, 0.190545769663195363, 0.192928149976771296, 0.195328520679563189,
0.197747066105098818, 0.200183974691911210, 0.202639439093708962, 0.205113656293837654,
0.207606827724221982, 0.210119159388988230, 0.212650861992978224, 0.215202151075378628,
0.217773247148700472, 0.220364375843359439, 0.222975768058120111, 0.225607660116683956,
0.228260293930716618, 0.230933917169627356, 0.233628783437433291, 0.236345152457059560,
0.239083290262449094, 0.241843469398877131, 0.244625969131892024, 0.247431075665327543,
0.250259082368862240, 0.253110290015629402, 0.255985007030415324, 0.258883549749016173,
0.261806242689362922, 0.264753418835062149, 0.267725419932044739, 0.270722596799059967,
0.273745309652802915, 0.276793928448517301, 0.279868833236972869, 0.282970414538780746,
0.286099073737076826, 0.289255223489677693, 0.292439288161892630, 0.295651704281261252,
0.298892921015581847, 0.302163400675693528, 0.305463619244590256, 0.308794066934560185,
0.312155248774179606, 0.315547685227128949, 0.318971912844957239, 0.322428484956089223,
0.325917972393556354, 0.329440964264136438, 0.332998068761809096, 0.336589914028677717,
0.340217149066780189, 0.343880444704502575, 0.347580494621637148, 0.351318016437483449,
0.355093752866787626, 0.358908472948750001, 0.362762973354817997, 0.366658079781514379,
0.370594648435146223, 0.374573567615902381, 0.378595759409581067, 0.382662181496010056,
0.386773829084137932, 0.390931736984797384, 0.395136981833290435, 0.399390684475231350,
0.403694012530530555, 0.408048183152032673, 0.412454465997161457, 0.416914186433003209,
0.421428728997616908, 0.425999541143034677, 0.430628137288459167, 0.435316103215636907,
0.440065100842354173, 0.444876873414548846, 0.449753251162755330, 0.454696157474615836,
0.459707615642138023, 0.464789756250426511, 0.469944825283960310, 0.475175193037377708,
0.480483363930454543, 0.485871987341885248, 0.491343869594032867, 0.496901987241549881,
0.502549501841348056, 0.508289776410643213, 0.514126393814748894, 0.520063177368233931,
0.526104213983620062, 0.532253880263043655, 0.538516872002862246, 0.544898237672440056,
0.551403416540641733, 0.558038282262587892, 0.564809192912400615, 0.571723048664826150,
0.578787358602845359, 0.586010318477268366, 0.593400901691733762, 0.600968966365232560,
0.608725382079622346, 0.616682180915207878, 0.624852738703666200, 0.633251994214366398,
0.641896716427266423, 0.650805833414571433, 0.660000841079000145, 0.669506316731925177,
0.679350572264765806, 0.689566496117078431, 0.700192655082788606, 0.711274760805076456,
0.722867659593572465, 0.735038092431424039, 0.747868621985195658, 0.761463388849896838,
0.775956852040116218, 0.791527636972496285, 0.808421651523009044, 0.826993296643051101,
0.847785500623990496, 0.871704332381204705, 0.900469929925747703, 0.938143680862176477,
1.000000000000000000];

View File

@ -1,746 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ISAAC random number generator.
#![allow(non_camel_case_types)]
use core::fmt;
use core::slice;
use core::iter::repeat;
use core::num::Wrapping as w;
use {Rand, Rng, SeedableRng};
type w32 = w<u32>;
type w64 = w<u64>;
const RAND_SIZE_LEN: usize = 8;
const RAND_SIZE: u32 = 1 << RAND_SIZE_LEN;
const RAND_SIZE_USIZE: usize = 1 << RAND_SIZE_LEN;
/// A random number generator that uses the ISAAC algorithm[1].
///
/// The ISAAC algorithm is generally accepted as suitable for
/// cryptographic purposes, but this implementation has not be
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
#[derive(Copy)]
pub struct IsaacRng {
cnt: u32,
rsl: [w32; RAND_SIZE_USIZE],
mem: [w32; RAND_SIZE_USIZE],
a: w32,
b: w32,
c: w32,
}
impl fmt::Debug for IsaacRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("IsaacRng")
.field("cnt", &self.cnt)
.field("rsl", &self.rsl.iter())
.field("mem", &self.mem.iter())
.field("a", &self.a)
.field("b", &self.b)
.field("c", &self.c)
.finish()
}
}
static EMPTY: IsaacRng = IsaacRng {
cnt: 0,
rsl: [w(0); RAND_SIZE_USIZE],
mem: [w(0); RAND_SIZE_USIZE],
a: w(0),
b: w(0),
c: w(0),
};
impl IsaacRng {
/// Create an ISAAC random number generator using the default
/// fixed seed.
pub fn new_unseeded() -> IsaacRng {
let mut rng = EMPTY;
rng.init(false);
rng
}
/// Initializes `self`. If `use_rsl` is true, then use the current value
/// of `rsl` as a seed, otherwise construct one algorithmically (not
/// randomly).
fn init(&mut self, use_rsl: bool) {
let mut a = w(0x9e3779b9);
let mut b = a;
let mut c = a;
let mut d = a;
let mut e = a;
let mut f = a;
let mut g = a;
let mut h = a;
macro_rules! mix {
() => {{
a = a ^ (b << 11);
d = d + a;
b = b + c;
b = b ^ (c >> 2);
e = e + b;
c = c + d;
c = c ^ (d << 8);
f = f + c;
d = d + e;
d = d ^ (e >> 16);
g = g + d;
e = e + f;
e = e ^ (f << 10);
h = h + e;
f = f + g;
f = f ^ (g >> 4);
a = a + f;
g = g + h;
g = g ^ (h << 8);
b = b + g;
h = h + a;
h = h ^ (a >> 9);
c = c + h;
a = a + b;
}}
}
for _ in 0..4 {
mix!();
}
if use_rsl {
macro_rules! memloop {
($arr:expr) => {{
for i in (0..RAND_SIZE_USIZE).step_by(8) {
a = a + $arr[i];
b = b + $arr[i + 1];
c = c + $arr[i + 2];
d = d + $arr[i + 3];
e = e + $arr[i + 4];
f = f + $arr[i + 5];
g = g + $arr[i + 6];
h = h + $arr[i + 7];
mix!();
self.mem[i] = a;
self.mem[i + 1] = b;
self.mem[i + 2] = c;
self.mem[i + 3] = d;
self.mem[i + 4] = e;
self.mem[i + 5] = f;
self.mem[i + 6] = g;
self.mem[i + 7] = h;
}
}}
}
memloop!(self.rsl);
memloop!(self.mem);
} else {
for i in (0..RAND_SIZE_USIZE).step_by(8) {
mix!();
self.mem[i] = a;
self.mem[i + 1] = b;
self.mem[i + 2] = c;
self.mem[i + 3] = d;
self.mem[i + 4] = e;
self.mem[i + 5] = f;
self.mem[i + 6] = g;
self.mem[i + 7] = h;
}
}
self.isaac();
}
/// Refills the output buffer (`self.rsl`)
#[inline]
fn isaac(&mut self) {
self.c = self.c + w(1);
// abbreviations
let mut a = self.a;
let mut b = self.b + self.c;
const MIDPOINT: usize = RAND_SIZE_USIZE / 2;
macro_rules! ind {
($x:expr) => (self.mem[($x >> 2).0 as usize & (RAND_SIZE_USIZE - 1)] )
}
let r = [(0, MIDPOINT), (MIDPOINT, 0)];
for &(mr_offset, m2_offset) in &r {
macro_rules! rngstepp {
($j:expr, $shift:expr) => {{
let base = $j;
let mix = a << $shift;
let x = self.mem[base + mr_offset];
a = (a ^ mix) + self.mem[base + m2_offset];
let y = ind!(x) + a + b;
self.mem[base + mr_offset] = y;
b = ind!(y >> RAND_SIZE_LEN) + x;
self.rsl[base + mr_offset] = b;
}}
}
macro_rules! rngstepn {
($j:expr, $shift:expr) => {{
let base = $j;
let mix = a >> $shift;
let x = self.mem[base + mr_offset];
a = (a ^ mix) + self.mem[base + m2_offset];
let y = ind!(x) + a + b;
self.mem[base + mr_offset] = y;
b = ind!(y >> RAND_SIZE_LEN) + x;
self.rsl[base + mr_offset] = b;
}}
}
for i in (0..MIDPOINT).step_by(4) {
rngstepp!(i + 0, 13);
rngstepn!(i + 1, 6);
rngstepp!(i + 2, 2);
rngstepn!(i + 3, 16);
}
}
self.a = a;
self.b = b;
self.cnt = RAND_SIZE;
}
}
// Cannot be derived because [u32; 256] does not implement Clone
impl Clone for IsaacRng {
fn clone(&self) -> IsaacRng {
*self
}
}
impl Rng for IsaacRng {
#[inline]
fn next_u32(&mut self) -> u32 {
if self.cnt == 0 {
// make some more numbers
self.isaac();
}
self.cnt -= 1;
// self.cnt is at most RAND_SIZE, but that is before the
// subtraction above. We want to index without bounds
// checking, but this could lead to incorrect code if someone
// misrefactors, so we check, sometimes.
//
// (Changes here should be reflected in Isaac64Rng.next_u64.)
debug_assert!(self.cnt < RAND_SIZE);
// (the % is cheaply telling the optimiser that we're always
// in bounds, without unsafe. NB. this is a power of two, so
// it optimises to a bitwise mask).
self.rsl[(self.cnt % RAND_SIZE) as usize].0
}
}
impl<'a> SeedableRng<&'a [u32]> for IsaacRng {
fn reseed(&mut self, seed: &'a [u32]) {
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
// - 1], 0, 0, ...], to fill rng.rsl.
let seed_iter = seed.iter().cloned().chain(repeat(0));
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
*rsl_elem = w(seed_elem);
}
self.cnt = 0;
self.a = w(0);
self.b = w(0);
self.c = w(0);
self.init(true);
}
/// Create an ISAAC random number generator with a seed. This can
/// be any length, although the maximum number of elements used is
/// 256 and any more will be silently ignored. A generator
/// constructed with a given seed will generate the same sequence
/// of values as all other generators constructed with that seed.
fn from_seed(seed: &'a [u32]) -> IsaacRng {
let mut rng = EMPTY;
rng.reseed(seed);
rng
}
}
impl Rand for IsaacRng {
fn rand<R: Rng>(other: &mut R) -> IsaacRng {
let mut ret = EMPTY;
unsafe {
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_USIZE * 4);
other.fill_bytes(slice);
}
ret.cnt = 0;
ret.a = w(0);
ret.b = w(0);
ret.c = w(0);
ret.init(true);
return ret;
}
}
const RAND_SIZE_64_LEN: usize = 8;
const RAND_SIZE_64: usize = 1 << RAND_SIZE_64_LEN;
/// A random number generator that uses ISAAC-64[1], the 64-bit
/// variant of the ISAAC algorithm.
///
/// The ISAAC algorithm is generally accepted as suitable for
/// cryptographic purposes, but this implementation has not be
/// verified as such. Prefer a generator like `OsRng` that defers to
/// the operating system for cases that need high security.
///
/// [1]: Bob Jenkins, [*ISAAC: A fast cryptographic random number
/// generator*](http://www.burtleburtle.net/bob/rand/isaacafa.html)
#[derive(Copy)]
pub struct Isaac64Rng {
cnt: usize,
rsl: [w64; RAND_SIZE_64],
mem: [w64; RAND_SIZE_64],
a: w64,
b: w64,
c: w64,
}
impl fmt::Debug for Isaac64Rng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Isaac64Rng")
.field("cnt", &self.cnt)
.field("rsl", &self.rsl.iter())
.field("mem", &self.mem.iter())
.field("a", &self.a)
.field("b", &self.b)
.field("c", &self.c)
.finish()
}
}
static EMPTY_64: Isaac64Rng = Isaac64Rng {
cnt: 0,
rsl: [w(0); RAND_SIZE_64],
mem: [w(0); RAND_SIZE_64],
a: w(0),
b: w(0),
c: w(0),
};
impl Isaac64Rng {
/// Create a 64-bit ISAAC random number generator using the
/// default fixed seed.
pub fn new_unseeded() -> Isaac64Rng {
let mut rng = EMPTY_64;
rng.init(false);
rng
}
/// Initializes `self`. If `use_rsl` is true, then use the current value
/// of `rsl` as a seed, otherwise construct one algorithmically (not
/// randomly).
fn init(&mut self, use_rsl: bool) {
macro_rules! init {
($var:ident) => (
let mut $var = w(0x9e3779b97f4a7c13);
)
}
init!(a);
init!(b);
init!(c);
init!(d);
init!(e);
init!(f);
init!(g);
init!(h);
macro_rules! mix {
() => {{
a = a - e;
f = f ^ (h >> 9);
h = h + a;
b = b - f;
g = g ^ (a << 9);
a = a + b;
c = c - g;
h = h ^ (b >> 23);
b = b + c;
d = d - h;
a = a ^ (c << 15);
c = c + d;
e = e - a;
b = b ^ (d >> 14);
d = d + e;
f = f - b;
c = c ^ (e << 20);
e = e + f;
g = g - c;
d = d ^ (f >> 17);
f = f + g;
h = h - d;
e = e ^ (g << 14);
g = g + h;
}}
}
for _ in 0..4 {
mix!();
}
if use_rsl {
macro_rules! memloop {
($arr:expr) => {{
for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) {
a = a + $arr[i];
b = b + $arr[i + 1];
c = c + $arr[i + 2];
d = d + $arr[i + 3];
e = e + $arr[i + 4];
f = f + $arr[i + 5];
g = g + $arr[i + 6];
h = h + $arr[i + 7];
mix!();
self.mem[i] = a;
self.mem[i + 1] = b;
self.mem[i + 2] = c;
self.mem[i + 3] = d;
self.mem[i + 4] = e;
self.mem[i + 5] = f;
self.mem[i + 6] = g;
self.mem[i + 7] = h;
}
}}
}
memloop!(self.rsl);
memloop!(self.mem);
} else {
for i in (0..RAND_SIZE_64 / 8).map(|i| i * 8) {
mix!();
self.mem[i] = a;
self.mem[i + 1] = b;
self.mem[i + 2] = c;
self.mem[i + 3] = d;
self.mem[i + 4] = e;
self.mem[i + 5] = f;
self.mem[i + 6] = g;
self.mem[i + 7] = h;
}
}
self.isaac64();
}
/// Refills the output buffer (`self.rsl`)
fn isaac64(&mut self) {
self.c = self.c + w(1);
// abbreviations
let mut a = self.a;
let mut b = self.b + self.c;
const MIDPOINT: usize = RAND_SIZE_64 / 2;
const MP_VEC: [(usize, usize); 2] = [(0, MIDPOINT), (MIDPOINT, 0)];
macro_rules! ind {
($x:expr) => {
*self.mem.get_unchecked((($x >> 3).0 as usize) & (RAND_SIZE_64 - 1))
}
}
for &(mr_offset, m2_offset) in &MP_VEC {
for base in (0..MIDPOINT / 4).map(|i| i * 4) {
macro_rules! rngstepp {
($j:expr, $shift:expr) => {{
let base = base + $j;
let mix = a ^ (a << $shift);
let mix = if $j == 0 {!mix} else {mix};
unsafe {
let x = *self.mem.get_unchecked(base + mr_offset);
a = mix + *self.mem.get_unchecked(base + m2_offset);
let y = ind!(x) + a + b;
*self.mem.get_unchecked_mut(base + mr_offset) = y;
b = ind!(y >> RAND_SIZE_64_LEN) + x;
*self.rsl.get_unchecked_mut(base + mr_offset) = b;
}
}}
}
macro_rules! rngstepn {
($j:expr, $shift:expr) => {{
let base = base + $j;
let mix = a ^ (a >> $shift);
let mix = if $j == 0 {!mix} else {mix};
unsafe {
let x = *self.mem.get_unchecked(base + mr_offset);
a = mix + *self.mem.get_unchecked(base + m2_offset);
let y = ind!(x) + a + b;
*self.mem.get_unchecked_mut(base + mr_offset) = y;
b = ind!(y >> RAND_SIZE_64_LEN) + x;
*self.rsl.get_unchecked_mut(base + mr_offset) = b;
}
}}
}
rngstepp!(0, 21);
rngstepn!(1, 5);
rngstepp!(2, 12);
rngstepn!(3, 33);
}
}
self.a = a;
self.b = b;
self.cnt = RAND_SIZE_64;
}
}
// Cannot be derived because [u32; 256] does not implement Clone
impl Clone for Isaac64Rng {
fn clone(&self) -> Isaac64Rng {
*self
}
}
impl Rng for Isaac64Rng {
// FIXME(https://github.com/rust-lang/rfcs/issues/628)
// having next_u32 like this should be unnecessary
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
if self.cnt == 0 {
// make some more numbers
self.isaac64();
}
self.cnt -= 1;
// See corresponding location in IsaacRng.next_u32 for
// explanation.
debug_assert!(self.cnt < RAND_SIZE_64);
self.rsl[(self.cnt % RAND_SIZE_64) as usize].0
}
}
impl<'a> SeedableRng<&'a [u64]> for Isaac64Rng {
fn reseed(&mut self, seed: &'a [u64]) {
// make the seed into [seed[0], seed[1], ..., seed[seed.len()
// - 1], 0, 0, ...], to fill rng.rsl.
let seed_iter = seed.iter().cloned().chain(repeat(0));
for (rsl_elem, seed_elem) in self.rsl.iter_mut().zip(seed_iter) {
*rsl_elem = w(seed_elem);
}
self.cnt = 0;
self.a = w(0);
self.b = w(0);
self.c = w(0);
self.init(true);
}
/// Create an ISAAC random number generator with a seed. This can
/// be any length, although the maximum number of elements used is
/// 256 and any more will be silently ignored. A generator
/// constructed with a given seed will generate the same sequence
/// of values as all other generators constructed with that seed.
fn from_seed(seed: &'a [u64]) -> Isaac64Rng {
let mut rng = EMPTY_64;
rng.reseed(seed);
rng
}
}
impl Rand for Isaac64Rng {
fn rand<R: Rng>(other: &mut R) -> Isaac64Rng {
let mut ret = EMPTY_64;
unsafe {
let ptr = ret.rsl.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_parts_mut(ptr, RAND_SIZE_64 * 8);
other.fill_bytes(slice);
}
ret.cnt = 0;
ret.a = w(0);
ret.b = w(0);
ret.c = w(0);
ret.init(true);
return ret;
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use {Rng, SeedableRng};
use super::{Isaac64Rng, IsaacRng};
#[test]
fn test_rng_32_rand_seeded() {
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
let mut ra: IsaacRng = SeedableRng::from_seed(&s[..]);
let mut rb: IsaacRng = SeedableRng::from_seed(&s[..]);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_64_rand_seeded() {
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
let mut ra: Isaac64Rng = SeedableRng::from_seed(&s[..]);
let mut rb: Isaac64Rng = SeedableRng::from_seed(&s[..]);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_32_seeded() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_64_seeded() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_32_reseed() {
let s = ::test::rng().gen_iter::<u32>().take(256).collect::<Vec<u32>>();
let mut r: IsaacRng = SeedableRng::from_seed(&s[..]);
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed(&s);
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
#[test]
fn test_rng_64_reseed() {
let s = ::test::rng().gen_iter::<u64>().take(256).collect::<Vec<u64>>();
let mut r: Isaac64Rng = SeedableRng::from_seed(&s[..]);
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed(&s);
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
#[test]
#[rustfmt_skip]
fn test_rng_32_true_values() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: IsaacRng = SeedableRng::from_seed(seed);
// Regression test that isaac is actually using the above vector
let v = (0..10).map(|_| ra.next_u32()).collect::<Vec<_>>();
assert_eq!(v,
vec![2558573138, 873787463, 263499565, 2103644246, 3595684709,
4203127393, 264982119, 2765226902, 2737944514, 3900253796]);
let seed: &[_] = &[12345, 67890, 54321, 9876];
let mut rb: IsaacRng = SeedableRng::from_seed(seed);
// skip forward to the 10000th number
for _ in 0..10000 {
rb.next_u32();
}
let v = (0..10).map(|_| rb.next_u32()).collect::<Vec<_>>();
assert_eq!(v,
vec![3676831399, 3183332890, 2834741178, 3854698763, 2717568474,
1576568959, 3507990155, 179069555, 141456972, 2478885421]);
}
#[test]
#[rustfmt_skip]
fn test_rng_64_true_values() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut ra: Isaac64Rng = SeedableRng::from_seed(seed);
// Regression test that isaac is actually using the above vector
let v = (0..10).map(|_| ra.next_u64()).collect::<Vec<_>>();
assert_eq!(v,
vec![547121783600835980, 14377643087320773276, 17351601304698403469,
1238879483818134882, 11952566807690396487, 13970131091560099343,
4469761996653280935, 15552757044682284409, 6860251611068737823,
13722198873481261842]);
let seed: &[_] = &[12345, 67890, 54321, 9876];
let mut rb: Isaac64Rng = SeedableRng::from_seed(seed);
// skip forward to the 10000th number
for _ in 0..10000 {
rb.next_u64();
}
let v = (0..10).map(|_| rb.next_u64()).collect::<Vec<_>>();
assert_eq!(v,
vec![18143823860592706164, 8491801882678285927, 2699425367717515619,
17196852593171130876, 2606123525235546165, 15790932315217671084,
596345674630742204, 9947027391921273664, 11788097613744130851,
10391409374914919106]);
}
#[test]
fn test_rng_clone() {
let seed: &[_] = &[1, 23, 456, 7890, 12345];
let mut rng: Isaac64Rng = SeedableRng::from_seed(seed);
let mut clone = rng.clone();
for _ in 0..16 {
assert_eq!(rng.next_u64(), clone.next_u64());
}
}
}

View File

@ -1,481 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interface to random number generators in Rust.
//!
//! This is an experimental library which lives underneath the standard library
//! in its dependency chain. This library is intended to define the interface
//! for random number generation and also provide utilities around doing so. It
//! is not recommended to use this library directly, but rather the official
//! interface through `std::rand`.
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
test(attr(deny(warnings))))]
#![deny(warnings)]
#![deny(missing_debug_implementations)]
#![no_std]
#![unstable(feature = "rand",
reason = "use `rand` from crates.io",
issue = "27703")]
#![feature(core_intrinsics)]
#![feature(staged_api)]
#![feature(iterator_step_by)]
#![feature(custom_attribute)]
#![feature(specialization)]
#![allow(unused_attributes)]
#![cfg_attr(not(test), feature(core_float))] // only necessary for no_std
#![cfg_attr(test, feature(test, rand))]
#![allow(deprecated)]
#[cfg(test)]
#[macro_use]
extern crate std;
use core::fmt;
use core::f64;
use core::intrinsics;
use core::marker::PhantomData;
pub use isaac::{Isaac64Rng, IsaacRng};
pub use chacha::ChaChaRng;
use distributions::{IndependentSample, Range};
use distributions::range::SampleRange;
#[cfg(test)]
const RAND_BENCH_N: u64 = 100;
pub mod distributions;
pub mod isaac;
pub mod chacha;
pub mod reseeding;
mod rand_impls;
// Temporary trait to implement a few floating-point routines
// needed by librand; this is necessary because librand doesn't
// depend on libstd. This will go away when librand is integrated
// into libstd.
#[doc(hidden)]
trait FloatMath: Sized {
fn exp(self) -> Self;
fn ln(self) -> Self;
fn sqrt(self) -> Self;
fn powf(self, n: Self) -> Self;
}
impl FloatMath for f64 {
#[inline]
fn exp(self) -> f64 {
unsafe { intrinsics::expf64(self) }
}
#[inline]
fn ln(self) -> f64 {
unsafe { intrinsics::logf64(self) }
}
#[inline]
fn powf(self, n: f64) -> f64 {
unsafe { intrinsics::powf64(self, n) }
}
#[inline]
fn sqrt(self) -> f64 {
if self < 0.0 {
f64::NAN
} else {
unsafe { intrinsics::sqrtf64(self) }
}
}
}
/// A type that can be randomly generated using an `Rng`.
#[doc(hidden)]
pub trait Rand: Sized {
/// Generates a random instance of this type using the specified source of
/// randomness.
fn rand<R: Rng>(rng: &mut R) -> Self;
}
/// A random number generator.
pub trait Rng: Sized {
/// Return the next random u32.
///
/// This rarely needs to be called directly, prefer `r.gen()` to
/// `r.next_u32()`.
// FIXME(https://github.com/rust-lang/rfcs/issues/628)
// Should be implemented in terms of next_u64
fn next_u32(&mut self) -> u32;
/// Return the next random u64.
///
/// By default this is implemented in terms of `next_u32`. An
/// implementation of this trait must provide at least one of
/// these two methods. Similarly to `next_u32`, this rarely needs
/// to be called directly, prefer `r.gen()` to `r.next_u64()`.
fn next_u64(&mut self) -> u64 {
((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
}
/// Return the next random f32 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u32`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f32(&mut self) -> f32 {
const MANTISSA_BITS: usize = 24;
const IGNORED_BITS: usize = 8;
const SCALE: f32 = (1u64 << MANTISSA_BITS) as f32;
// using any more than `MANTISSA_BITS` bits will
// cause (e.g.) 0xffff_ffff to correspond to 1
// exactly, so we need to drop some (8 for f32, 11
// for f64) to guarantee the open end.
(self.next_u32() >> IGNORED_BITS) as f32 / SCALE
}
/// Return the next random f64 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u64`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f64(&mut self) -> f64 {
const MANTISSA_BITS: usize = 53;
const IGNORED_BITS: usize = 11;
const SCALE: f64 = (1u64 << MANTISSA_BITS) as f64;
(self.next_u64() >> IGNORED_BITS) as f64 / SCALE
}
/// Fill `dest` with random data.
///
/// This has a default implementation in terms of `next_u64` and
/// `next_u32`, but should be overridden by implementations that
/// offer a more efficient solution than just calling those
/// methods repeatedly.
///
/// This method does *not* have a requirement to bear any fixed
/// relationship to the other methods, for example, it does *not*
/// have to result in the same output as progressively filling
/// `dest` with `self.gen::<u8>()`, and any such behavior should
/// not be relied upon.
///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
/// source of randomness).
fn fill_bytes(&mut self, dest: &mut [u8]) {
// this could, in theory, be done by transmuting dest to a
// [u64], but this is (1) likely to be undefined behaviour for
// LLVM, (2) has to be very careful about alignment concerns,
// (3) adds more `unsafe` that needs to be checked, (4)
// probably doesn't give much performance gain if
// optimisations are on.
let mut count = 0;
let mut num = 0;
for byte in dest {
if count == 0 {
// we could micro-optimise here by generating a u32 if
// we only need a few more bytes to fill the vector
// (i.e. at most 4).
num = self.next_u64();
count = 8;
}
*byte = (num & 0xff) as u8;
num >>= 8;
count -= 1;
}
}
/// Return a random value of a `Rand` type.
#[inline(always)]
fn gen<T: Rand>(&mut self) -> T {
Rand::rand(self)
}
/// Return an iterator that will yield an infinite number of randomly
/// generated items.
fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> {
Generator {
rng: self,
_marker: PhantomData,
}
}
/// Generate a random value in the range [`low`, `high`).
///
/// This is a convenience wrapper around
/// `distributions::Range`. If this function will be called
/// repeatedly with the same arguments, one should use `Range`, as
/// that will amortize the computations that allow for perfect
/// uniformity, as they only happen on initialization.
///
/// # Panics
///
/// Panics if `low >= high`.
fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T {
assert!(low < high, "Rng.gen_range called with low >= high");
Range::new(low, high).ind_sample(self)
}
/// Return a bool with a 1 in n chance of true
fn gen_weighted_bool(&mut self, n: usize) -> bool {
n <= 1 || self.gen_range(0, n) == 0
}
/// Return an iterator of random characters from the set A-Z,a-z,0-9.
fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> {
AsciiGenerator { rng: self }
}
/// Return a random element from `values`.
///
/// Return `None` if `values` is empty.
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
if values.is_empty() {
None
} else {
Some(&values[self.gen_range(0, values.len())])
}
}
/// Shuffle a mutable slice in place.
fn shuffle<T>(&mut self, values: &mut [T]) {
let mut i = values.len();
while i >= 2 {
// invariant: elements with index >= i have been locked in place.
i -= 1;
// lock element i in place.
values.swap(i, self.gen_range(0, i + 1));
}
}
}
/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the `gen_iter` method on `Rng`.
pub struct Generator<'a, T, R: 'a> {
rng: &'a mut R,
_marker: PhantomData<T>,
}
impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.rng.gen())
}
}
impl<'a, T, R: fmt::Debug> fmt::Debug for Generator<'a, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Generator")
.field("rng", &self.rng)
.finish()
}
}
/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the `gen_ascii_chars` method on `Rng`.
pub struct AsciiGenerator<'a, R: 'a> {
rng: &'a mut R,
}
impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
type Item = char;
fn next(&mut self) -> Option<char> {
const GEN_ASCII_STR_CHARSET: &'static [u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
}
}
impl<'a, R: fmt::Debug> fmt::Debug for AsciiGenerator<'a, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("AsciiGenerator")
.field("rng", &self.rng)
.finish()
}
}
/// A random number generator that can be explicitly seeded to produce
/// the same stream of randomness multiple times.
pub trait SeedableRng<Seed>: Rng {
/// Reseed an RNG with the given seed.
fn reseed(&mut self, _: Seed);
/// Create a new RNG with the given seed.
fn from_seed(seed: Seed) -> Self;
}
/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[derive(Clone, Debug)]
pub struct XorShiftRng {
x: u32,
y: u32,
z: u32,
w: u32,
}
impl XorShiftRng {
/// Creates a new XorShiftRng instance which is not seeded.
///
/// The initial values of this RNG are constants, so all generators created
/// by this function will yield the same stream of random numbers. It is
/// highly recommended that this is created through `SeedableRng` instead of
/// this function
pub fn new_unseeded() -> XorShiftRng {
XorShiftRng {
x: 0x193a6754,
y: 0xa8a7d469,
z: 0x97830e05,
w: 0x113ba7bb,
}
}
}
impl Rng for XorShiftRng {
#[inline]
fn next_u32(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w = self.w;
self.w = w ^ (w >> 19) ^ (t ^ (t >> 8));
self.w
}
}
impl SeedableRng<[u32; 4]> for XorShiftRng {
/// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
fn reseed(&mut self, seed: [u32; 4]) {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng.reseed called with an all zero seed.");
self.x = seed[0];
self.y = seed[1];
self.z = seed[2];
self.w = seed[3];
}
/// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
fn from_seed(seed: [u32; 4]) -> XorShiftRng {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng::from_seed called with an all zero seed.");
XorShiftRng {
x: seed[0],
y: seed[1],
z: seed[2],
w: seed[3],
}
}
}
impl Rand for XorShiftRng {
fn rand<R: Rng>(rng: &mut R) -> XorShiftRng {
let mut tuple: (u32, u32, u32, u32) = rng.gen();
while tuple == (0, 0, 0, 0) {
tuple = rng.gen();
}
let (x, y, z, w) = tuple;
XorShiftRng {
x,
y,
z,
w,
}
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// open interval `(0,1)` (not including either endpoint).
///
/// Use `Closed01` for the closed interval `[0,1]`, and the default
/// `Rand` implementation for `f32` and `f64` for the half-open
/// `[0,1)`.
pub struct Open01<F>(pub F);
impl<F: fmt::Debug> fmt::Debug for Open01<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Open01")
.field(&self.0)
.finish()
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// closed interval `[0,1]` (including both endpoints).
///
/// Use `Open01` for the closed interval `(0,1)`, and the default
/// `Rand` implementation of `f32` and `f64` for the half-open
/// `[0,1)`.
pub struct Closed01<F>(pub F);
impl<F: fmt::Debug> fmt::Debug for Closed01<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Closed01")
.field(&self.0)
.finish()
}
}
#[cfg(test)]
mod test {
use std::__rand as rand;
pub struct MyRng<R> {
inner: R,
}
impl<R: rand::Rng> ::Rng for MyRng<R> {
fn next_u32(&mut self) -> u32 {
rand::Rng::next_u32(&mut self.inner)
}
}
pub fn rng() -> MyRng<rand::ThreadRng> {
MyRng { inner: rand::thread_rng() }
}
pub fn weak_rng() -> MyRng<rand::ThreadRng> {
MyRng { inner: rand::thread_rng() }
}
}

View File

@ -1,208 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The implementations of `Rand` for the built-in types.
use core::char;
use core::mem;
use {Rand, Rng};
impl Rand for isize {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> isize {
if mem::size_of::<isize>() == 4 {
rng.gen::<i32>() as isize
} else {
rng.gen::<i64>() as isize
}
}
}
impl Rand for i8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i8 {
rng.next_u32() as i8
}
}
impl Rand for i16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i16 {
rng.next_u32() as i16
}
}
impl Rand for i32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i32 {
rng.next_u32() as i32
}
}
impl Rand for i64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> i64 {
rng.next_u64() as i64
}
}
impl Rand for usize {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> usize {
if mem::size_of::<usize>() == 4 {
rng.gen::<u32>() as usize
} else {
rng.gen::<u64>() as usize
}
}
}
impl Rand for u8 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u8 {
rng.next_u32() as u8
}
}
impl Rand for u16 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u16 {
rng.next_u32() as u16
}
}
impl Rand for u32 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u32 {
rng.next_u32()
}
}
impl Rand for u64 {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> u64 {
rng.next_u64()
}
}
macro_rules! float_impls {
($mod_name:ident, $ty:ty, $mantissa_bits:expr, $method_name:ident) => {
mod $mod_name {
use {Rand, Rng, Open01, Closed01};
const SCALE: $ty = (1u64 << $mantissa_bits) as $ty;
impl Rand for $ty {
/// Generate a floating point number in the half-open
/// interval `[0,1)`.
///
/// See `Closed01` for the closed interval `[0,1]`,
/// and `Open01` for the open interval `(0,1)`.
#[inline]
fn rand<R: Rng>(rng: &mut R) -> $ty {
rng.$method_name()
}
}
impl Rand for Open01<$ty> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Open01<$ty> {
// add a small amount (specifically 2 bits below
// the precision of f64/f32 at 1.0), so that small
// numbers are larger than 0, but large numbers
// aren't pushed to/above 1.
Open01(rng.$method_name() + 0.25 / SCALE)
}
}
impl Rand for Closed01<$ty> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Closed01<$ty> {
// rescale so that 1.0 - epsilon becomes 1.0
// precisely.
Closed01(rng.$method_name() * SCALE / (SCALE - 1.0))
}
}
}
}
}
float_impls! { f64_rand_impls, f64, 53, next_f64 }
float_impls! { f32_rand_impls, f32, 24, next_f32 }
impl Rand for char {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> char {
// a char is 21 bits
const CHAR_MASK: u32 = 0x001f_ffff;
loop {
// Rejection sampling. About 0.2% of numbers with at most
// 21-bits are invalid codepoints (surrogates), so this
// will succeed first go almost every time.
if let Some(c) = char::from_u32(rng.next_u32() & CHAR_MASK) {
return c;
}
}
}
}
impl Rand for bool {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> bool {
rng.gen::<u8>() & 1 == 1
}
}
macro_rules! tuple_impl {
// use variables to indicate the arity of the tuple
($($tyvar:ident),* ) => {
// the trailing commas are for the 1 tuple
impl<
$( $tyvar : Rand ),*
> Rand for ( $( $tyvar ),* , ) {
#[inline]
fn rand<R: Rng>(_rng: &mut R) -> ( $( $tyvar ),* , ) {
(
// use the $tyvar's to get the appropriate number of
// repeats (they're not actually needed)
$(
_rng.gen::<$tyvar>()
),*
,
)
}
}
}
}
impl Rand for () {
#[inline]
fn rand<R: Rng>(_: &mut R) -> () {
()
}
}
tuple_impl!{A}
tuple_impl!{A, B}
tuple_impl!{A, B, C}
tuple_impl!{A, B, C, D}
tuple_impl!{A, B, C, D, E}
tuple_impl!{A, B, C, D, E, F}
tuple_impl!{A, B, C, D, E, F, G}
tuple_impl!{A, B, C, D, E, F, G, H}
tuple_impl!{A, B, C, D, E, F, G, H, I}
tuple_impl!{A, B, C, D, E, F, G, H, I, J}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K}
tuple_impl!{A, B, C, D, E, F, G, H, I, J, K, L}
impl<T: Rand> Rand for Option<T> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Option<T> {
if rng.gen() { Some(rng.gen()) } else { None }
}
}

View File

@ -1,216 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A wrapper around another RNG that reseeds it after it
//! generates a certain number of random bytes.
use core::fmt;
use {Rng, SeedableRng};
/// How many bytes of entropy the underling RNG is allowed to generate
/// before it is reseeded.
const DEFAULT_GENERATION_THRESHOLD: usize = 32 * 1024;
/// A wrapper around any RNG which reseeds the underlying RNG after it
/// has generated a certain number of random bytes.
pub struct ReseedingRng<R, Rsdr> {
rng: R,
generation_threshold: usize,
bytes_generated: usize,
/// Controls the behavior when reseeding the RNG.
pub reseeder: Rsdr,
}
impl<R: Rng, Rsdr: Reseeder<R>> ReseedingRng<R, Rsdr> {
/// Create a new `ReseedingRng` with the given parameters.
///
/// # Arguments
///
/// * `rng`: the random number generator to use.
/// * `generation_threshold`: the number of bytes of entropy at which to reseed the RNG.
/// * `reseeder`: the reseeding object to use.
pub fn new(rng: R, generation_threshold: usize, reseeder: Rsdr) -> ReseedingRng<R, Rsdr> {
ReseedingRng {
rng,
generation_threshold,
bytes_generated: 0,
reseeder,
}
}
/// Reseed the internal RNG if the number of bytes that have been
/// generated exceed the threshold.
pub fn reseed_if_necessary(&mut self) {
if self.bytes_generated >= self.generation_threshold {
self.reseeder.reseed(&mut self.rng);
self.bytes_generated = 0;
}
}
}
impl<R: Rng, Rsdr: Reseeder<R>> Rng for ReseedingRng<R, Rsdr> {
fn next_u32(&mut self) -> u32 {
self.reseed_if_necessary();
self.bytes_generated += 4;
self.rng.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.reseed_if_necessary();
self.bytes_generated += 8;
self.rng.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.reseed_if_necessary();
self.bytes_generated += dest.len();
self.rng.fill_bytes(dest)
}
}
impl<S, R: SeedableRng<S>, Rsdr: Reseeder<R> + Default>
SeedableRng<(Rsdr, S)> for ReseedingRng<R, Rsdr> {
fn reseed(&mut self, (rsdr, seed): (Rsdr, S)) {
self.rng.reseed(seed);
self.reseeder = rsdr;
self.bytes_generated = 0;
}
/// Create a new `ReseedingRng` from the given reseeder and
/// seed. This uses a default value for `generation_threshold`.
fn from_seed((rsdr, seed): (Rsdr, S)) -> ReseedingRng<R, Rsdr> {
ReseedingRng {
rng: SeedableRng::from_seed(seed),
generation_threshold: DEFAULT_GENERATION_THRESHOLD,
bytes_generated: 0,
reseeder: rsdr,
}
}
}
impl<R: fmt::Debug, Rsdr: fmt::Debug> fmt::Debug for ReseedingRng<R, Rsdr> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ReseedingRng")
.field("rng", &self.rng)
.field("generation_threshold", &self.generation_threshold)
.field("bytes_generated", &self.bytes_generated)
.field("reseeder", &self.reseeder)
.finish()
}
}
/// Something that can be used to reseed an RNG via `ReseedingRng`.
pub trait Reseeder<R> {
/// Reseed the given RNG.
fn reseed(&mut self, rng: &mut R);
}
/// Reseed an RNG using a `Default` instance. This reseeds by
/// replacing the RNG with the result of a `Default::default` call.
#[derive(Copy, Clone, Debug)]
pub struct ReseedWithDefault;
impl<R: Rng + Default> Reseeder<R> for ReseedWithDefault {
fn reseed(&mut self, rng: &mut R) {
*rng = Default::default();
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Default for ReseedWithDefault {
/// Creates an instance of `ReseedWithDefault`.
fn default() -> ReseedWithDefault {
ReseedWithDefault
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use super::{ReseedWithDefault, ReseedingRng};
use {Rng, SeedableRng};
struct Counter {
i: u32,
}
impl Rng for Counter {
fn next_u32(&mut self) -> u32 {
self.i += 1;
// very random
self.i - 1
}
}
impl Default for Counter {
/// Constructs a `Counter` with initial value zero.
fn default() -> Counter {
Counter { i: 0 }
}
}
impl SeedableRng<u32> for Counter {
fn reseed(&mut self, seed: u32) {
self.i = seed;
}
fn from_seed(seed: u32) -> Counter {
Counter { i: seed }
}
}
type MyRng = ReseedingRng<Counter, ReseedWithDefault>;
#[test]
fn test_reseeding() {
let mut rs = ReseedingRng::new(Counter { i: 0 }, 400, ReseedWithDefault);
let mut i = 0;
for _ in 0..1000 {
assert_eq!(rs.next_u32(), i % 100);
i += 1;
}
}
#[test]
fn test_rng_seeded() {
let mut ra: MyRng = SeedableRng::from_seed((ReseedWithDefault, 2));
let mut rb: MyRng = SeedableRng::from_seed((ReseedWithDefault, 2));
assert!(ra.gen_ascii_chars()
.take(100)
.eq(rb.gen_ascii_chars().take(100)));
}
#[test]
fn test_rng_reseed() {
let mut r: MyRng = SeedableRng::from_seed((ReseedWithDefault, 3));
let string1: String = r.gen_ascii_chars().take(100).collect();
r.reseed((ReseedWithDefault, 3));
let string2: String = r.gen_ascii_chars().take(100).collect();
assert_eq!(string1, string2);
}
const FILL_BYTES_V_LEN: usize = 13579;
#[test]
fn test_rng_fill_bytes() {
let mut v = vec![0; FILL_BYTES_V_LEN];
::test::rng().fill_bytes(&mut v);
// Sanity test: if we've gotten here, `fill_bytes` has not infinitely
// recursed.
assert_eq!(v.len(), FILL_BYTES_V_LEN);
// To test that `fill_bytes` actually did something, check that the
// average of `v` is not 0.
let mut sum = 0.0;
for &x in &v {
sum += x as f64;
}
assert!(sum / v.len() as f64 != 0.0);
}
}

View File

@ -12,6 +12,7 @@ crate-type = ["dylib"]
syntax = { path = "../libsyntax" }
serialize = { path = "../libserialize" }
log = "0.3"
rand = "0.3"
[features]
jemalloc = []

View File

@ -29,11 +29,10 @@
#![feature(box_syntax)]
#![feature(const_fn)]
#![feature(libc)]
#![feature(rand)]
#![cfg_attr(test, feature(rand))]
extern crate syntax;
extern crate libc;
extern crate rand;
extern crate serialize;
#[macro_use] extern crate log;

View File

@ -12,7 +12,7 @@ use std::env;
use std::io::{self, Error, ErrorKind};
use std::fs;
use std::path::{self, PathBuf, Path};
use std::__rand::{thread_rng, Rng};
use rand::{thread_rng, Rng};
/// A wrapper for a path to temporary directory implementing automatic
/// scope-based deletion.

View File

@ -10,9 +10,10 @@ crate-type = ["dylib"]
[dependencies]
graphviz = { path = "../libgraphviz" }
log = "0.3"
rand = "0.3"
rustc = { path = "../librustc" }
rustc_data_structures = { path = "../librustc_data_structures" }
serialize = { path = "../libserialize" }
log = "0.3"
syntax = { path = "../libsyntax" }
syntax_pos = { path = "../libsyntax_pos" }

View File

@ -15,7 +15,6 @@
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![deny(warnings)]
#![feature(rand)]
#![feature(conservative_impl_trait)]
#![feature(i128_type)]
#![feature(inclusive_range_syntax)]
@ -25,6 +24,7 @@ extern crate graphviz;
#[macro_use] extern crate rustc;
extern crate rustc_data_structures;
extern crate serialize as rustc_serialize;
extern crate rand;
#[macro_use] extern crate log;
extern crate syntax;

View File

@ -125,7 +125,8 @@ use std::io;
use std::mem;
use std::path::{Path, PathBuf};
use std::time::{UNIX_EPOCH, SystemTime, Duration};
use std::__rand::{thread_rng, Rng};
use rand::{thread_rng, Rng};
const LOCK_FILE_EXT: &'static str = ".lock";
const DEP_GRAPH_FILENAME: &'static str = "dep-graph.bin";

View File

@ -20,12 +20,14 @@ panic_unwind = { path = "../libpanic_unwind", optional = true }
panic_abort = { path = "../libpanic_abort" }
core = { path = "../libcore" }
libc = { path = "../rustc/libc_shim" }
rand = { path = "../librand" }
compiler_builtins = { path = "../rustc/compiler_builtins_shim" }
profiler_builtins = { path = "../libprofiler_builtins", optional = true }
std_unicode = { path = "../libstd_unicode" }
unwind = { path = "../libunwind" }
[dev-dependencies]
rand = "0.3"
[target.x86_64-apple-darwin.dependencies]
rustc_asan = { path = "../librustc_asan" }
rustc_tsan = { path = "../librustc_tsan" }

View File

@ -20,8 +20,8 @@ use hash::{Hash, Hasher, BuildHasher, SipHasher13};
use iter::{FromIterator, FusedIterator};
use mem::{self, replace};
use ops::{Deref, Index, InPlace, Place, Placer};
use rand::{self, Rng};
use ptr;
use sys;
use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
use super::table::BucketState::{Empty, Full};
@ -2461,9 +2461,7 @@ impl RandomState {
// increment one of the seeds on every RandomState creation, giving
// every corresponding HashMap a different iteration order.
thread_local!(static KEYS: Cell<(u64, u64)> = {
let r = rand::OsRng::new();
let mut r = r.expect("failed to create an OS RNG");
Cell::new((r.gen(), r.gen()))
Cell::new(sys::hashmap_random_keys())
});
KEYS.with(|keys| {

View File

@ -23,6 +23,8 @@ use core::num;
use intrinsics;
#[cfg(not(test))]
use num::FpCategory;
#[cfg(not(test))]
use sys::cmath;
#[stable(feature = "rust1", since = "1.0.0")]
@ -36,92 +38,6 @@ pub use core::f32::{MIN, MIN_POSITIVE, MAX};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f32::consts;
#[allow(dead_code)]
mod cmath {
use libc::{c_float, c_int};
extern {
pub fn cbrtf(n: c_float) -> c_float;
pub fn erff(n: c_float) -> c_float;
pub fn erfcf(n: c_float) -> c_float;
pub fn expm1f(n: c_float) -> c_float;
pub fn fdimf(a: c_float, b: c_float) -> c_float;
pub fn fmodf(a: c_float, b: c_float) -> c_float;
pub fn ilogbf(n: c_float) -> c_int;
pub fn logbf(n: c_float) -> c_float;
pub fn log1pf(n: c_float) -> c_float;
pub fn modff(n: c_float, iptr: &mut c_float) -> c_float;
pub fn nextafterf(x: c_float, y: c_float) -> c_float;
pub fn tgammaf(n: c_float) -> c_float;
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "__lgammaf_r")]
pub fn lgammaf_r(n: c_float, sign: &mut c_int) -> c_float;
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "_hypotf")]
pub fn hypotf(x: c_float, y: c_float) -> c_float;
}
// See the comments in the `floor` function for why MSVC is special
// here.
#[cfg(not(target_env = "msvc"))]
extern {
pub fn acosf(n: c_float) -> c_float;
pub fn asinf(n: c_float) -> c_float;
pub fn atan2f(a: c_float, b: c_float) -> c_float;
pub fn atanf(n: c_float) -> c_float;
pub fn coshf(n: c_float) -> c_float;
pub fn sinhf(n: c_float) -> c_float;
pub fn tanf(n: c_float) -> c_float;
pub fn tanhf(n: c_float) -> c_float;
}
#[cfg(target_env = "msvc")]
pub use self::shims::*;
#[cfg(target_env = "msvc")]
mod shims {
use libc::c_float;
#[inline]
pub unsafe fn acosf(n: c_float) -> c_float {
f64::acos(n as f64) as c_float
}
#[inline]
pub unsafe fn asinf(n: c_float) -> c_float {
f64::asin(n as f64) as c_float
}
#[inline]
pub unsafe fn atan2f(n: c_float, b: c_float) -> c_float {
f64::atan2(n as f64, b as f64) as c_float
}
#[inline]
pub unsafe fn atanf(n: c_float) -> c_float {
f64::atan(n as f64) as c_float
}
#[inline]
pub unsafe fn coshf(n: c_float) -> c_float {
f64::cosh(n as f64) as c_float
}
#[inline]
pub unsafe fn sinhf(n: c_float) -> c_float {
f64::sinh(n as f64) as c_float
}
#[inline]
pub unsafe fn tanf(n: c_float) -> c_float {
f64::tan(n as f64) as c_float
}
#[inline]
pub unsafe fn tanhf(n: c_float) -> c_float {
f64::tanh(n as f64) as c_float
}
}
}
#[cfg(not(test))]
#[lang = "f32"]
impl f32 {

View File

@ -23,6 +23,8 @@ use core::num;
use intrinsics;
#[cfg(not(test))]
use num::FpCategory;
#[cfg(not(test))]
use sys::cmath;
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON};
@ -35,53 +37,6 @@ pub use core::f64::{MIN, MIN_POSITIVE, MAX};
#[stable(feature = "rust1", since = "1.0.0")]
pub use core::f64::consts;
#[allow(dead_code)]
mod cmath {
use libc::{c_double, c_int};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn asin(n: c_double) -> c_double;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn cbrt(n: c_double) -> c_double;
pub fn cosh(n: c_double) -> c_double;
pub fn erf(n: c_double) -> c_double;
pub fn erfc(n: c_double) -> c_double;
pub fn expm1(n: c_double) -> c_double;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fmod(a: c_double, b: c_double) -> c_double;
pub fn frexp(n: c_double, value: &mut c_int) -> c_double;
pub fn ilogb(n: c_double) -> c_int;
pub fn ldexp(x: c_double, n: c_int) -> c_double;
pub fn logb(n: c_double) -> c_double;
pub fn log1p(n: c_double) -> c_double;
pub fn nextafter(x: c_double, y: c_double) -> c_double;
pub fn modf(n: c_double, iptr: &mut c_double) -> c_double;
pub fn sinh(n: c_double) -> c_double;
pub fn tan(n: c_double) -> c_double;
pub fn tanh(n: c_double) -> c_double;
pub fn tgamma(n: c_double) -> c_double;
// These are commonly only available for doubles
pub fn j0(n: c_double) -> c_double;
pub fn j1(n: c_double) -> c_double;
pub fn jn(i: c_int, n: c_double) -> c_double;
pub fn y0(n: c_double) -> c_double;
pub fn y1(n: c_double) -> c_double;
pub fn yn(i: c_int, n: c_double) -> c_double;
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "__lgamma_r")]
pub fn lgamma_r(n: c_double, sign: &mut c_int) -> c_double;
#[cfg_attr(all(windows, target_env = "msvc"), link_name = "_hypot")]
pub fn hypot(x: c_double, y: c_double) -> c_double;
}
}
#[cfg(not(test))]
#[lang = "f64"]
impl f64 {

View File

@ -14,7 +14,6 @@ use cmp::Ordering;
use error::Error;
use fmt::{self, Write};
use io;
use libc;
use mem;
use memchr;
use ops;
@ -22,6 +21,7 @@ use os::raw::c_char;
use ptr;
use slice;
use str::{self, Utf8Error};
use sys;
/// A type representing an owned, C-compatible, nul-terminated string with no nul bytes in the
/// middle.
@ -404,7 +404,7 @@ impl CString {
/// ```
#[stable(feature = "cstr_memory", since = "1.4.0")]
pub unsafe fn from_raw(ptr: *mut c_char) -> CString {
let len = libc::strlen(ptr) + 1; // Including the NUL byte
let len = sys::strlen(ptr) + 1; // Including the NUL byte
let slice = slice::from_raw_parts_mut(ptr, len as usize);
CString { inner: Box::from_raw(slice as *mut [c_char] as *mut [u8]) }
}
@ -861,7 +861,7 @@ impl CStr {
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
let len = libc::strlen(ptr);
let len = sys::strlen(ptr);
let ptr = ptr as *const u8;
CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1))
}

View File

@ -121,10 +121,8 @@ impl<R: io::Read> io::Read for Maybe<R> {
}
fn handle_ebadf<T>(r: io::Result<T>, default: T) -> io::Result<T> {
use sys::stdio::EBADF_ERR;
match r {
Err(ref e) if e.raw_os_error() == Some(EBADF_ERR) => Ok(default),
Err(ref e) if stdio::is_ebadf(e) => Ok(default),
r => r
}
}

View File

@ -356,6 +356,7 @@ use prelude::v1::*;
// Access to Bencher, etc.
#[cfg(test)] extern crate test;
#[cfg(test)] extern crate rand;
// We want to reexport a few macros from core but libcore has already been
// imported by the compiler (via our #[no_std] attribute) In this case we just
@ -364,9 +365,6 @@ use prelude::v1::*;
debug_assert_ne, unreachable, unimplemented, write, writeln, try)]
extern crate core as __core;
#[doc(masked)]
#[allow(deprecated)]
extern crate rand as core_rand;
#[macro_use]
#[macro_reexport(vec, format)]
extern crate alloc;
@ -504,24 +502,12 @@ mod sys;
// Private support modules
mod panicking;
mod rand;
mod memchr;
// The runtime entry point and a few unstable public functions used by the
// compiler
pub mod rt;
// Some external utilities of the standard library rely on randomness (aka
// rustc_back::TempDir and tests) and need a way to get at the OS rng we've got
// here. This module is not at all intended for stabilization as-is, however,
// but it may be stabilized long-term. As a result we're exposing a hidden,
// unstable module so we can get our build working.
#[doc(hidden)]
#[unstable(feature = "rand", issue = "27703")]
pub mod __rand {
pub use rand::{thread_rng, ThreadRng, Rng};
}
// Include a number of private modules that exist solely to provide
// the rustdoc documentation for primitive types. Using `include!`
// because rustdoc only looks for these modules at the crate level.

View File

@ -1,286 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic
//! and so can be used to generate any type that implements `Rand`. Type inference
//! means that often a simple call to `rand::random()` or `rng.gen()` will
//! suffice, but sometimes an annotation is required, e.g. `rand::random::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! - On Linux, `/dev/random` may block if entropy pool is empty; `/dev/urandom` will not block.
//! This does not mean that `/dev/random` provides better output than
//! `/dev/urandom`; the kernel internally runs a cryptographically secure pseudorandom
//! number generator (CSPRNG) based on entropy pool for random number generation,
//! so the "quality" of `/dev/random` is not better than `/dev/urandom` in most cases.
//! However, this means that `/dev/urandom` can yield somewhat predictable randomness
//! if the entropy pool is very small, such as immediately after first booting.
//! Linux 3.17 added the `getrandom(2)` system call which solves the issue: it blocks if entropy
//! pool is not initialized yet, but it does not block once initialized.
//! `getrandom(2)` was based on `getentropy(2)`, an existing system call in OpenBSD.
//! `OsRng` tries to use `getrandom(2)` if available, and use `/dev/urandom` fallback if not.
//! If an application does not have `getrandom` and likely to be run soon after first booting,
//! or on a system with very few entropy sources, one should consider using `/dev/random` via
//! `ReaderRng`.
//! - On some systems (e.g. FreeBSD, OpenBSD and macOS) there is no difference
//! between the two sources. (Also note that, on some systems e.g. FreeBSD, both `/dev/random`
//! and `/dev/urandom` may block once if the CSPRNG has not seeded yet.)
#![unstable(feature = "rand", issue = "27703")]
use cell::RefCell;
use fmt;
use io;
use mem;
use rc::Rc;
use sys;
#[cfg(target_pointer_width = "32")]
use core_rand::IsaacRng as IsaacWordRng;
#[cfg(target_pointer_width = "64")]
use core_rand::Isaac64Rng as IsaacWordRng;
pub use core_rand::{Rand, Rng, SeedableRng};
pub use core_rand::{XorShiftRng, IsaacRng, Isaac64Rng};
pub use core_rand::reseeding;
pub mod reader;
/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone)]
pub struct StdRng {
rng: IsaacWordRng,
}
impl StdRng {
/// Create a randomly seeded instance of `StdRng`.
///
/// This is a very expensive operation as it has to read
/// randomness from the operating system and use this in an
/// expensive seeding operation. If one is only generating a small
/// number of random numbers, or doesn't need the utmost speed for
/// generating each number, `thread_rng` and/or `random` may be more
/// appropriate.
///
/// Reading the randomness from the OS may fail, and any error is
/// propagated via the `io::Result` return value.
pub fn new() -> io::Result<StdRng> {
OsRng::new().map(|mut r| StdRng { rng: r.gen() })
}
}
impl Rng for StdRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
}
impl<'a> SeedableRng<&'a [usize]> for StdRng {
fn reseed(&mut self, seed: &'a [usize]) {
// the internal RNG can just be seeded from the above
// randomness.
self.rng.reseed(unsafe {mem::transmute(seed)})
}
fn from_seed(seed: &'a [usize]) -> StdRng {
StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
}
}
/// Controls how the thread-local RNG is reseeded.
struct ThreadRngReseeder;
impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
fn reseed(&mut self, rng: &mut StdRng) {
*rng = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not reseed thread_rng: {}", e)
}
}
}
const THREAD_RNG_RESEED_THRESHOLD: usize = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;
/// The thread-local RNG.
#[derive(Clone)]
pub struct ThreadRng {
rng: Rc<RefCell<ThreadRngInner>>,
}
impl fmt::Debug for ThreadRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("ThreadRng { .. }")
}
}
/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<isize>()`.
///
/// The RNG provided will reseed itself from the operating system
/// after generating a certain amount of randomness.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
// used to make space in TLS for a random number generator
thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
let r = match StdRng::new() {
Ok(r) => r,
Err(e) => panic!("could not initialize thread_rng: {}", e)
};
let rng = reseeding::ReseedingRng::new(r,
THREAD_RNG_RESEED_THRESHOLD,
ThreadRngReseeder);
Rc::new(RefCell::new(rng))
});
ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
}
impl Rng for ThreadRng {
fn next_u32(&mut self) -> u32 {
self.rng.borrow_mut().next_u32()
}
fn next_u64(&mut self) -> u64 {
self.rng.borrow_mut().next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.borrow_mut().fill_bytes(bytes)
}
}
/// A random number generator that retrieves randomness straight from
/// the operating system. Platform sources:
///
/// - Unix-like systems (Linux, Android, macOS): read directly from
/// `/dev/urandom`, or from `getrandom(2)` system call if available.
/// - Windows: calls `CryptGenRandom`, using the default cryptographic
/// service provider with the `PROV_RSA_FULL` type.
/// - iOS: calls SecRandomCopyBytes as /dev/(u)random is sandboxed.
/// - OpenBSD: uses the `getentropy(2)` system call.
///
/// This does not block.
pub struct OsRng(sys::rand::OsRng);
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
sys::rand::OsRng::new().map(OsRng)
}
}
impl Rng for OsRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.0.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.0.next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.0.fill_bytes(bytes)
}
}
#[cfg(test)]
mod tests {
use sync::mpsc::channel;
use rand::Rng;
use super::OsRng;
use thread;
#[test]
fn test_os_rng() {
let mut r = OsRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v = [0; 1000];
r.fill_bytes(&mut v);
}
#[test]
#[cfg_attr(target_os = "emscripten", ignore)]
fn test_os_rng_tasks() {
let mut txs = vec![];
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move|| {
// wait until all the threads are ready to go.
rx.recv().unwrap();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OsRng::new().unwrap();
thread::yield_now();
let mut v = [0; 1000];
for _ in 0..100 {
r.next_u32();
thread::yield_now();
r.next_u64();
thread::yield_now();
r.fill_bytes(&mut v);
thread::yield_now();
}
});
}
// start all the threads
for tx in &txs {
tx.send(()).unwrap();
}
}
}

View File

@ -23,7 +23,6 @@
#![doc(hidden)]
// Reexport some of our utilities which are expected by other crates.
pub use panicking::{begin_panic, begin_panic_fmt, update_panic_count};

View File

@ -554,8 +554,6 @@ impl<'a, T: ?Sized> Drop for RwLockWriteGuard<'a, T> {
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
#![allow(deprecated)] // rand
use rand::{self, Rng};
use sync::mpsc::channel;
use thread;
@ -576,7 +574,7 @@ mod tests {
#[test]
fn frob() {
const N: usize = 10;
const N: u32 = 10;
const M: usize = 1000;
let r = Arc::new(RwLock::new(()));

View File

@ -96,8 +96,8 @@ extern fn trace_fn(ctx: *mut uw::_Unwind_Context,
if cx.idx < cx.frames.len() {
cx.frames[cx.idx] = Frame {
symbol_addr: symaddr,
exact_position: ip,
symbol_addr: symaddr as *mut u8,
exact_position: ip as *mut u8,
};
cx.idx += 1;
}

View File

@ -0,0 +1,43 @@
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg(not(test))]
use libc::{c_float, c_double};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn acosf(n: c_float) -> c_float;
pub fn asin(n: c_double) -> c_double;
pub fn asinf(n: c_float) -> c_float;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn atan2f(a: c_float, b: c_float) -> c_float;
pub fn atanf(n: c_float) -> c_float;
pub fn cbrt(n: c_double) -> c_double;
pub fn cbrtf(n: c_float) -> c_float;
pub fn cosh(n: c_double) -> c_double;
pub fn coshf(n: c_float) -> c_float;
pub fn expm1(n: c_double) -> c_double;
pub fn expm1f(n: c_float) -> c_float;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fdimf(a: c_float, b: c_float) -> c_float;
pub fn hypot(x: c_double, y: c_double) -> c_double;
pub fn hypotf(x: c_float, y: c_float) -> c_float;
pub fn log1p(n: c_double) -> c_double;
pub fn log1pf(n: c_float) -> c_float;
pub fn sinh(n: c_double) -> c_double;
pub fn sinhf(n: c_float) -> c_float;
pub fn tan(n: c_double) -> c_double;
pub fn tanf(n: c_float) -> c_float;
pub fn tanh(n: c_double) -> c_double;
pub fn tanhf(n: c_float) -> c_float;
}

View File

@ -12,9 +12,13 @@
use io::{self, ErrorKind};
pub use libc::strlen;
pub use self::rand::hashmap_random_keys;
pub mod args;
#[cfg(feature = "backtrace")]
pub mod backtrace;
pub mod cmath;
pub mod condvar;
pub mod env;
pub mod ext;

View File

@ -8,50 +8,6 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io;
use rand::Rng;
// FIXME: Use rand:
pub struct OsRng {
state: [u64; 2]
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng {
state: [0xBADF00D1, 0xDEADBEEF]
})
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
fn next_u64(&mut self) -> u64 {
// Store the first and second part.
let mut x = self.state[0];
let y = self.state[1];
// Put the second part into the first slot.
self.state[0] = y;
// Twist the first slot.
x ^= x << 23;
// Update the second slot.
self.state[1] = x ^ y ^ (x >> 17) ^ (y >> 26);
// Generate the final integer.
self.state[1].wrapping_add(y)
}
fn fill_bytes(&mut self, buf: &mut [u8]) {
for chunk in buf.chunks_mut(8) {
let mut rand: u64 = self.next_u64();
for b in chunk.iter_mut() {
*b = rand as u8;
rand = rand >> 8;
}
}
}
pub fn hashmap_random_keys() -> (u64, u64) {
(0, 0)
}

View File

@ -70,5 +70,8 @@ impl io::Write for Stderr {
}
}
pub const EBADF_ERR: i32 = ::sys::syscall::EBADF;
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(::sys::syscall::EBADF as i32)
}
pub const STDIN_BUF_SIZE: usize = ::sys_common::io::DEFAULT_BUF_SIZE;

View File

@ -22,7 +22,7 @@ pub fn resolve_symname<F>(frame: Frame,
{
unsafe {
let mut info: Dl_info = intrinsics::init();
let symname = if dladdr(frame.exact_position, &mut info) == 0 ||
let symname = if dladdr(frame.exact_position as *mut _, &mut info) == 0 ||
info.dli_sname.is_null() {
None
} else {
@ -41,6 +41,5 @@ struct Dl_info {
}
extern {
fn dladdr(addr: *const libc::c_void,
info: *mut Dl_info) -> libc::c_int;
fn dladdr(addr: *const libc::c_void, info: *mut Dl_info) -> libc::c_int;
}

View File

@ -20,7 +20,7 @@ pub use self::dladdr::resolve_symname;
#[cfg(target_os = "emscripten")]
pub fn foreach_symbol_fileline<F>(_: Frame, _: F, _: &BacktraceContext) -> io::Result<bool>
where
F: FnMut(&[u8], ::libc::c_int) -> io::Result<()>
F: FnMut(&[u8], u32) -> io::Result<()>
{
Ok(false)
}

View File

@ -36,8 +36,8 @@ pub fn unwind_backtrace(frames: &mut [Frame])
} as usize;
for (from, to) in raw_frames.iter().zip(frames.iter_mut()).take(nb_frames) {
*to = Frame {
exact_position: *from,
symbol_addr: *from,
exact_position: *from as *mut u8,
symbol_addr: *from as *mut u8,
};
}
Ok((nb_frames as usize, BacktraceContext))

View File

@ -96,8 +96,8 @@ extern fn trace_fn(ctx: *mut uw::_Unwind_Context,
if cx.idx < cx.frames.len() {
cx.frames[cx.idx] = Frame {
symbol_addr: symaddr,
exact_position: ip,
symbol_addr: symaddr as *mut u8,
exact_position: ip as *mut u8,
};
cx.idx += 1;
}

View File

@ -0,0 +1,43 @@
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg(not(test))]
use libc::{c_float, c_double};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn acosf(n: c_float) -> c_float;
pub fn asin(n: c_double) -> c_double;
pub fn asinf(n: c_float) -> c_float;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn atan2f(a: c_float, b: c_float) -> c_float;
pub fn atanf(n: c_float) -> c_float;
pub fn cbrt(n: c_double) -> c_double;
pub fn cbrtf(n: c_float) -> c_float;
pub fn cosh(n: c_double) -> c_double;
pub fn coshf(n: c_float) -> c_float;
pub fn expm1(n: c_double) -> c_double;
pub fn expm1f(n: c_float) -> c_float;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fdimf(a: c_float, b: c_float) -> c_float;
pub fn hypot(x: c_double, y: c_double) -> c_double;
pub fn hypotf(x: c_float, y: c_float) -> c_float;
pub fn log1p(n: c_double) -> c_double;
pub fn log1pf(n: c_float) -> c_float;
pub fn sinh(n: c_double) -> c_double;
pub fn sinhf(n: c_float) -> c_float;
pub fn tan(n: c_double) -> c_double;
pub fn tanf(n: c_float) -> c_float;
pub fn tanh(n: c_double) -> c_double;
pub fn tanhf(n: c_float) -> c_float;
}

View File

@ -29,6 +29,9 @@ use libc;
#[cfg(all(not(dox), target_os = "fuchsia"))] pub use os::fuchsia as platform;
#[cfg(all(not(dox), target_os = "l4re"))] pub use os::linux as platform;
pub use self::rand::hashmap_random_keys;
pub use libc::strlen;
#[macro_use]
pub mod weak;
@ -36,6 +39,7 @@ pub mod args;
pub mod android;
#[cfg(feature = "backtrace")]
pub mod backtrace;
pub mod cmath;
pub mod condvar;
pub mod env;
pub mod ext;

View File

@ -8,20 +8,17 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::imp::OsRng;
use mem;
use slice;
fn next_u32(fill_buf: &mut FnMut(&mut [u8])) -> u32 {
let mut buf: [u8; 4] = [0; 4];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 4], u32>(buf) }
}
fn next_u64(fill_buf: &mut FnMut(&mut [u8])) -> u64 {
let mut buf: [u8; 8] = [0; 8];
fill_buf(&mut buf);
unsafe { mem::transmute::<[u8; 8], u64>(buf) }
pub fn hashmap_random_keys() -> (u64, u64) {
let mut v = (0, 0);
unsafe {
let view = slice::from_raw_parts_mut(&mut v as *mut _ as *mut u8,
mem::size_of_val(&v));
imp::fill_bytes(view);
}
return v
}
#[cfg(all(unix,
@ -30,14 +27,9 @@ fn next_u64(fill_buf: &mut FnMut(&mut [u8])) -> u64 {
not(target_os = "freebsd"),
not(target_os = "fuchsia")))]
mod imp {
use self::OsRngInner::*;
use super::{next_u32, next_u64};
use fs::File;
use io;
use io::Read;
use libc;
use rand::Rng;
use rand::reader::ReaderRng;
use sys::os::errno;
#[cfg(all(target_os = "linux",
@ -81,7 +73,7 @@ mod imp {
target_arch = "s390x"))))]
fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 }
fn getrandom_fill_bytes(v: &mut [u8]) {
fn getrandom_fill_bytes(v: &mut [u8]) -> bool {
let mut read = 0;
while read < v.len() {
let result = getrandom(&mut v[read..]);
@ -90,18 +82,7 @@ mod imp {
if err == libc::EINTR {
continue;
} else if err == libc::EAGAIN {
// if getrandom() returns EAGAIN it would have blocked
// because the non-blocking pool (urandom) has not
// initialized in the kernel yet due to a lack of entropy
// the fallback we do here is to avoid blocking applications
// which could depend on this call without ever knowing
// they do and don't have a work around. The PRNG of
// /dev/urandom will still be used but not over a completely
// full entropy pool
let reader = File::open("/dev/urandom").expect("Unable to open /dev/urandom");
let mut reader_rng = ReaderRng::new(reader);
reader_rng.fill_bytes(&mut v[read..]);
read += v.len();
return false
} else {
panic!("unexpected getrandom error: {}", err);
}
@ -109,6 +90,8 @@ mod imp {
read += result as usize;
}
}
return true
}
#[cfg(all(target_os = "linux",
@ -120,6 +103,7 @@ mod imp {
target_arch = "powerpc64",
target_arch = "s390x")))]
fn is_getrandom_available() -> bool {
use io;
use sync::atomic::{AtomicBool, Ordering};
use sync::Once;
@ -151,89 +135,37 @@ mod imp {
target_arch = "s390x"))))]
fn is_getrandom_available() -> bool { false }
pub struct OsRng {
inner: OsRngInner,
}
enum OsRngInner {
OsGetrandomRng,
OsReaderRng(ReaderRng<File>),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
if is_getrandom_available() {
return Ok(OsRng { inner: OsGetrandomRng });
}
let reader = File::open("/dev/urandom")?;
let reader_rng = ReaderRng::new(reader);
Ok(OsRng { inner: OsReaderRng(reader_rng) })
pub fn fill_bytes(v: &mut [u8]) {
// getrandom_fill_bytes here can fail if getrandom() returns EAGAIN,
// meaning it would have blocked because the non-blocking pool (urandom)
// has not initialized in the kernel yet due to a lack of entropy the
// fallback we do here is to avoid blocking applications which could
// depend on this call without ever knowing they do and don't have a
// work around. The PRNG of /dev/urandom will still be used but not
// over a completely full entropy pool
if is_getrandom_available() && getrandom_fill_bytes(v) {
return
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
match self.inner {
OsGetrandomRng => next_u32(&mut getrandom_fill_bytes),
OsReaderRng(ref mut rng) => rng.next_u32(),
}
}
fn next_u64(&mut self) -> u64 {
match self.inner {
OsGetrandomRng => next_u64(&mut getrandom_fill_bytes),
OsReaderRng(ref mut rng) => rng.next_u64(),
}
}
fn fill_bytes(&mut self, v: &mut [u8]) {
match self.inner {
OsGetrandomRng => getrandom_fill_bytes(v),
OsReaderRng(ref mut rng) => rng.fill_bytes(v)
}
}
let mut file = File::open("/dev/urandom")
.expect("failed to open /dev/urandom");
file.read_exact(v).expect("failed to read /dev/urandom");
}
}
#[cfg(target_os = "openbsd")]
mod imp {
use super::{next_u32, next_u64};
use io;
use libc;
use sys::os::errno;
use rand::Rng;
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
panic!("unexpected getentropy error: {}", errno());
}
pub fn fill_bytes(v: &mut [u8]) {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
panic!("unexpected getentropy error: {}", errno());
}
}
}
@ -241,18 +173,9 @@ mod imp {
#[cfg(target_os = "ios")]
mod imp {
use super::{next_u32, next_u64};
use io;
use ptr;
use rand::Rng;
use libc::{c_int, size_t};
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
use ptr;
enum SecRandom {}
@ -261,79 +184,41 @@ mod imp {
extern {
fn SecRandomCopyBytes(rnd: *const SecRandom,
count: size_t, bytes: *mut u8) -> c_int;
count: size_t,
bytes: *mut u8) -> c_int;
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault, v.len(),
v.as_mut_ptr())
};
if ret == -1 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
pub fn fill_bytes(v: &mut [u8]) {
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault,
v.len(),
v.as_mut_ptr())
};
if ret == -1 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
}
}
#[cfg(target_os = "freebsd")]
mod imp {
use super::{next_u32, next_u64};
use io;
use libc;
use rand::Rng;
use ptr;
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
panic!("kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret, s.len(), s_len);
}
pub fn fill_bytes(v: &mut [u8]) {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
// kern.arandom permits a maximum buffer size of 256 bytes
for s in v.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
panic!("kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})",
ret, s.len(), s_len);
}
}
}
@ -341,11 +226,6 @@ mod imp {
#[cfg(target_os = "fuchsia")]
mod imp {
use super::{next_u32, next_u64};
use io;
use rand::Rng;
#[link(name = "zircon")]
extern {
fn zx_cprng_draw(buffer: *mut u8, len: usize, actual: *mut usize) -> i32;
@ -363,39 +243,18 @@ mod imp {
}
}
pub struct OsRng {
// dummy field to ensure that this struct cannot be constructed outside
// of this module
_dummy: (),
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng { _dummy: () })
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
next_u32(&mut |v| self.fill_bytes(v))
}
fn next_u64(&mut self) -> u64 {
next_u64(&mut |v| self.fill_bytes(v))
}
fn fill_bytes(&mut self, v: &mut [u8]) {
let mut buf = v;
while !buf.is_empty() {
let ret = getrandom(buf);
match ret {
Err(err) => {
panic!("kernel zx_cprng_draw call failed! (returned {}, buf.len() {})",
err, buf.len())
}
Ok(actual) => {
let move_buf = buf;
buf = &mut move_buf[(actual as usize)..];
}
pub fn fill_bytes(v: &mut [u8]) {
let mut buf = v;
while !buf.is_empty() {
let ret = getrandom(buf);
match ret {
Err(err) => {
panic!("kernel zx_cprng_draw call failed! (returned {}, buf.len() {})",
err, buf.len())
}
Ok(actual) => {
let move_buf = buf;
buf = &mut move_buf[(actual as usize)..];
}
}
}

View File

@ -70,5 +70,8 @@ impl io::Write for Stderr {
}
}
pub const EBADF_ERR: i32 = ::libc::EBADF as i32;
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(libc::EBADF as i32)
}
pub const STDIN_BUF_SIZE: usize = ::sys_common::io::DEFAULT_BUF_SIZE;

View File

@ -87,7 +87,7 @@ impl Thread {
};
extern fn thread_start(main: *mut libc::c_void) -> *mut libc::c_void {
unsafe { start_thread(main); }
unsafe { start_thread(main as *mut u8); }
ptr::null_mut()
}
}

View File

@ -95,8 +95,8 @@ pub fn unwind_backtrace(frames: &mut [Frame])
frame.AddrReturn.Offset == 0 { break }
frames[i] = Frame {
symbol_addr: (addr - 1) as *const c_void,
exact_position: (addr - 1) as *const c_void,
symbol_addr: (addr - 1) as *const u8,
exact_position: (addr - 1) as *const u8,
};
i += 1;
}

View File

@ -10,7 +10,7 @@
use ffi::CStr;
use io;
use libc::{c_ulong, c_int, c_char};
use libc::{c_ulong, c_char};
use mem;
use sys::c;
use sys::backtrace::BacktraceContext;
@ -59,7 +59,7 @@ pub fn foreach_symbol_fileline<F>(frame: Frame,
mut f: F,
context: &BacktraceContext)
-> io::Result<bool>
where F: FnMut(&[u8], c_int) -> io::Result<()>
where F: FnMut(&[u8], u32) -> io::Result<()>
{
let SymGetLineFromAddr64 = sym!(&context.dbghelp,
"SymGetLineFromAddr64",
@ -76,7 +76,7 @@ pub fn foreach_symbol_fileline<F>(frame: Frame,
&mut line);
if ret == c::TRUE {
let name = CStr::from_ptr(line.Filename).to_bytes();
f(name, line.LineNumber as c_int)?;
f(name, line.LineNumber as u32)?;
}
Ok(false)
}

View File

@ -0,0 +1,103 @@
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![cfg(not(test))]
use libc::{c_float, c_double};
#[link_name = "m"]
extern {
pub fn acos(n: c_double) -> c_double;
pub fn asin(n: c_double) -> c_double;
pub fn atan(n: c_double) -> c_double;
pub fn atan2(a: c_double, b: c_double) -> c_double;
pub fn cbrt(n: c_double) -> c_double;
pub fn cbrtf(n: c_float) -> c_float;
pub fn cosh(n: c_double) -> c_double;
pub fn expm1(n: c_double) -> c_double;
pub fn expm1f(n: c_float) -> c_float;
pub fn fdim(a: c_double, b: c_double) -> c_double;
pub fn fdimf(a: c_float, b: c_float) -> c_float;
#[cfg_attr(target_env = "msvc", link_name = "_hypot")]
pub fn hypot(x: c_double, y: c_double) -> c_double;
#[cfg_attr(target_env = "msvc", link_name = "_hypotf")]
pub fn hypotf(x: c_float, y: c_float) -> c_float;
pub fn log1p(n: c_double) -> c_double;
pub fn log1pf(n: c_float) -> c_float;
pub fn sinh(n: c_double) -> c_double;
pub fn tan(n: c_double) -> c_double;
pub fn tanh(n: c_double) -> c_double;
}
pub use self::shims::*;
#[cfg(not(target_env = "msvc"))]
mod shims {
use libc::c_float;
extern {
pub fn acosf(n: c_float) -> c_float;
pub fn asinf(n: c_float) -> c_float;
pub fn atan2f(a: c_float, b: c_float) -> c_float;
pub fn atanf(n: c_float) -> c_float;
pub fn coshf(n: c_float) -> c_float;
pub fn sinhf(n: c_float) -> c_float;
pub fn tanf(n: c_float) -> c_float;
pub fn tanhf(n: c_float) -> c_float;
}
}
// On MSVC these functions aren't defined, so we just define shims which promote
// everything fo f64, perform the calculation, and then demote back to f32.
// While not precisely correct should be "correct enough" for now.
#[cfg(target_env = "msvc")]
mod shims {
use libc::c_float;
#[inline]
pub unsafe fn acosf(n: c_float) -> c_float {
f64::acos(n as f64) as c_float
}
#[inline]
pub unsafe fn asinf(n: c_float) -> c_float {
f64::asin(n as f64) as c_float
}
#[inline]
pub unsafe fn atan2f(n: c_float, b: c_float) -> c_float {
f64::atan2(n as f64, b as f64) as c_float
}
#[inline]
pub unsafe fn atanf(n: c_float) -> c_float {
f64::atan(n as f64) as c_float
}
#[inline]
pub unsafe fn coshf(n: c_float) -> c_float {
f64::cosh(n as f64) as c_float
}
#[inline]
pub unsafe fn sinhf(n: c_float) -> c_float {
f64::sinh(n as f64) as c_float
}
#[inline]
pub unsafe fn tanf(n: c_float) -> c_float {
f64::tan(n as f64) as c_float
}
#[inline]
pub unsafe fn tanhf(n: c_float) -> c_float {
f64::tanh(n as f64) as c_float
}
}

View File

@ -17,12 +17,16 @@ use os::windows::ffi::{OsStrExt, OsStringExt};
use path::PathBuf;
use time::Duration;
pub use libc::strlen;
pub use self::rand::hashmap_random_keys;
#[macro_use] pub mod compat;
pub mod args;
#[cfg(feature = "backtrace")]
pub mod backtrace;
pub mod c;
pub mod cmath;
pub mod condvar;
#[cfg(feature = "backtrace")]
pub mod dynamic_lib;

View File

@ -15,11 +15,13 @@ use io;
use mem;
use path::Path;
use ptr;
use rand::{self, Rng};
use slice;
use sync::atomic::Ordering::SeqCst;
use sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT};
use sys::c;
use sys::fs::{File, OpenOptions};
use sys::handle::Handle;
use sys::hashmap_random_keys;
////////////////////////////////////////////////////////////////////////////////
// Anonymous pipes
@ -71,10 +73,9 @@ pub fn anon_pipe(ours_readable: bool) -> io::Result<Pipes> {
let mut reject_remote_clients_flag = c::PIPE_REJECT_REMOTE_CLIENTS;
loop {
tries += 1;
let key: u64 = rand::thread_rng().gen();
name = format!(r"\\.\pipe\__rust_anonymous_pipe1__.{}.{}",
c::GetCurrentProcessId(),
key);
random_number());
let wide_name = OsStr::new(&name)
.encode_wide()
.chain(Some(0))
@ -156,6 +157,17 @@ pub fn anon_pipe(ours_readable: bool) -> io::Result<Pipes> {
}
}
fn random_number() -> usize {
static N: AtomicUsize = ATOMIC_USIZE_INIT;
loop {
if N.load(SeqCst) != 0 {
return N.fetch_add(1, SeqCst)
}
N.store(hashmap_random_keys().0 as usize, SeqCst);
}
}
impl AnonPipe {
pub fn handle(&self) -> &Handle { &self.inner }
pub fn into_handle(self) -> Handle { self.inner }

View File

@ -8,45 +8,19 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use io;
use mem;
use rand::Rng;
use sys::c;
pub struct OsRng;
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> io::Result<OsRng> {
Ok(OsRng)
}
}
impl Rng for OsRng {
fn next_u32(&mut self) -> u32 {
let mut v = [0; 4];
self.fill_bytes(&mut v);
unsafe { mem::transmute(v) }
}
fn next_u64(&mut self) -> u64 {
let mut v = [0; 8];
self.fill_bytes(&mut v);
unsafe { mem::transmute(v) }
}
fn fill_bytes(&mut self, v: &mut [u8]) {
// RtlGenRandom takes an ULONG (u32) for the length so we need to
// split up the buffer.
for slice in v.chunks_mut(<c::ULONG>::max_value() as usize) {
let ret = unsafe {
c::RtlGenRandom(slice.as_mut_ptr(), slice.len() as c::ULONG)
};
if ret == 0 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
}
pub fn hashmap_random_keys() -> (u64, u64) {
let mut v = (0, 0);
let ret = unsafe {
c::RtlGenRandom(&mut v as *mut _ as *mut u8,
mem::size_of_val(&v) as c::ULONG)
};
if ret == 0 {
panic!("couldn't generate random bytes: {}",
io::Error::last_os_error());
}
return v
}

View File

@ -218,7 +218,10 @@ fn readconsole_input_control(wakeup_mask: c::ULONG) -> c::CONSOLE_READCONSOLE_CO
const CTRL_Z: u8 = 0x1A;
const CTRL_Z_MASK: c::ULONG = 0x4000000; //1 << 0x1A
pub const EBADF_ERR: i32 = ::sys::c::ERROR_INVALID_HANDLE as i32;
pub fn is_ebadf(err: &io::Error) -> bool {
err.raw_os_error() == Some(c::ERROR_INVALID_HANDLE as i32)
}
// The default buffer capacity is 64k, but apparently windows
// doesn't like 64k reads on stdin. See #13304 for details, but the
// idea is that on windows we use a slightly smaller buffer that's

View File

@ -52,7 +52,7 @@ impl Thread {
};
extern "system" fn thread_start(main: *mut c_void) -> c::DWORD {
unsafe { start_thread(main); }
unsafe { start_thread(main as *mut u8); }
0
}
}

View File

@ -14,7 +14,6 @@
use env;
use io::prelude::*;
use io;
use libc;
use str;
use sync::atomic::{self, Ordering};
use path::{self, Path};
@ -39,9 +38,9 @@ pub const HEX_WIDTH: usize = 10;
#[derive(Debug, Copy, Clone)]
pub struct Frame {
/// Exact address of the call that failed.
pub exact_position: *const libc::c_void,
pub exact_position: *const u8,
/// Address of the enclosing function.
pub symbol_addr: *const libc::c_void,
pub symbol_addr: *const u8,
}
/// Max number of frames to print.
@ -201,8 +200,10 @@ fn output(w: &mut Write, idx: usize, frame: Frame,
///
/// See also `output`.
#[allow(dead_code)]
fn output_fileline(w: &mut Write, file: &[u8], line: libc::c_int,
format: PrintFormat) -> io::Result<()> {
fn output_fileline(w: &mut Write,
file: &[u8],
line: u32,
format: PrintFormat) -> io::Result<()> {
// prior line: " ##: {:2$} - func"
w.write_all(b"")?;
match format {

View File

@ -20,13 +20,13 @@ use sys_common::backtrace::Frame;
pub fn foreach_symbol_fileline<F>(frame: Frame,
mut f: F,
_: &BacktraceContext) -> io::Result<bool>
where F: FnMut(&[u8], libc::c_int) -> io::Result<()>
where F: FnMut(&[u8], u32) -> io::Result<()>
{
// pcinfo may return an arbitrary number of file:line pairs,
// in the order of stack trace (i.e. inlined calls first).
// in order to avoid allocation, we stack-allocate a fixed size of entries.
const FILELINE_SIZE: usize = 32;
let mut fileline_buf = [(ptr::null(), -1); FILELINE_SIZE];
let mut fileline_buf = [(ptr::null(), !0); FILELINE_SIZE];
let ret;
let fileline_count = {
let state = unsafe { init_state() };
@ -136,7 +136,7 @@ extern {
// helper callbacks
////////////////////////////////////////////////////////////////////////
type FileLine = (*const libc::c_char, libc::c_int);
type FileLine = (*const libc::c_char, u32);
extern fn error_cb(_data: *mut libc::c_void, _msg: *const libc::c_char,
_errnum: libc::c_int) {
@ -162,7 +162,7 @@ extern fn pcinfo_cb(data: *mut libc::c_void,
// if the buffer is not full, add file:line to the buffer
// and adjust the buffer for next possible calls to pcinfo_cb.
if !buffer.is_empty() {
buffer[0] = (filename, lineno);
buffer[0] = (filename, lineno as u32);
unsafe { ptr::write(slot, &mut buffer[1..]); }
}
}

View File

@ -10,12 +10,11 @@
use env;
use alloc::boxed::FnBox;
use libc;
use sync::atomic::{self, Ordering};
use sys::stack_overflow;
use sys::thread as imp;
pub unsafe fn start_thread(main: *mut libc::c_void) {
pub unsafe fn start_thread(main: *mut u8) {
// Next, set up our stack overflow handler which may get triggered if we run
// out of stack.
let _handler = stack_overflow::Handler::new();

View File

@ -1,21 +0,0 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(rand)]
// ensure that the ThreadRng isn't/doesn't become accidentally sendable.
use std::__rand::ThreadRng;
fn test_send<S: Send>() {}
pub fn main() {
test_send::<ThreadRng>(); //~ ERROR std::marker::Send` is not satisfied
}

View File

@ -8,9 +8,11 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(rand, std_panic)]
#![feature(rustc_private, std_panic)]
use std::__rand::{thread_rng, Rng};
extern crate rand;
use rand::{thread_rng, Rng};
use std::panic::{self, AssertUnwindSafe};
use std::collections::BinaryHeap;

View File

@ -10,14 +10,15 @@
// compile-flags: --test
#![feature(rand, std_panic)]
#![feature(rustc_private, std_panic)]
extern crate rand;
use std::env::*;
use std::__rand as rand;
use std::__rand::Rng;
use std::iter::repeat;
use std::ffi::{OsString, OsStr};
use rand::Rng;
fn make_rand_name() -> OsString {
let mut rng = rand::thread_rng();

View File

@ -10,11 +10,13 @@
// ignore-emscripten no threads support
#![feature(rand)]
#![feature(rustc_private)]
#![feature(sort_unstable)]
#![feature(const_atomic_usize_new)]
use std::__rand::{thread_rng, Rng};
extern crate rand;
use rand::{thread_rng, Rng};
use std::cell::Cell;
use std::cmp::Ordering;
use std::panic;