Rollup merge of #47964 - jcowgill:mips64-abi, r=eddyb
rustc_trans: rewrite mips64 ABI code This PR rewrites the ABI handling code for 64-bit MIPS and should fix various FFI issues including #47290. To accomodate the 64-bit ABI I have had to add a new `CastTarget` variant which I've called `Chunked` (though maybe this isn't the best name). This allows an ABI to cast to some arbitrary structure of `Reg` types. This is required on MIPS which might need to cast to a structure containing a mixture of `i64` and `f64` types.
This commit is contained in:
commit
f5116e712f
@ -40,7 +40,7 @@ use rustc::ty::layout::{self, Align, Size, TyLayout};
|
||||
use rustc::ty::layout::{HasDataLayout, LayoutOf};
|
||||
|
||||
use libc::c_uint;
|
||||
use std::{cmp, iter};
|
||||
use std::cmp;
|
||||
|
||||
pub use syntax::abi::Abi;
|
||||
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
|
||||
@ -279,30 +279,6 @@ impl Uniform {
|
||||
pub fn align(&self, cx: &CodegenCx) -> Align {
|
||||
self.unit.align(cx)
|
||||
}
|
||||
|
||||
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
|
||||
let llunit = self.unit.llvm_type(cx);
|
||||
|
||||
if self.total <= self.unit.size {
|
||||
return llunit;
|
||||
}
|
||||
|
||||
let count = self.total.bytes() / self.unit.size.bytes();
|
||||
let rem_bytes = self.total.bytes() % self.unit.size.bytes();
|
||||
|
||||
if rem_bytes == 0 {
|
||||
return Type::array(&llunit, count);
|
||||
}
|
||||
|
||||
// Only integers can be really split further.
|
||||
assert_eq!(self.unit.kind, RegKind::Integer);
|
||||
|
||||
let args: Vec<_> = (0..count).map(|_| llunit)
|
||||
.chain(iter::once(Type::ix(cx, rem_bytes * 8)))
|
||||
.collect();
|
||||
|
||||
Type::struct_(cx, &args, false)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait LayoutExt<'tcx> {
|
||||
@ -405,55 +381,81 @@ impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
pub enum CastTarget {
|
||||
Uniform(Uniform),
|
||||
Pair(Reg, Reg)
|
||||
pub struct CastTarget {
|
||||
pub prefix: [Option<RegKind>; 8],
|
||||
pub prefix_chunk: Size,
|
||||
pub rest: Uniform,
|
||||
}
|
||||
|
||||
impl From<Reg> for CastTarget {
|
||||
fn from(unit: Reg) -> CastTarget {
|
||||
CastTarget::Uniform(Uniform::from(unit))
|
||||
CastTarget::from(Uniform::from(unit))
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Uniform> for CastTarget {
|
||||
fn from(uniform: Uniform) -> CastTarget {
|
||||
CastTarget::Uniform(uniform)
|
||||
CastTarget {
|
||||
prefix: [None; 8],
|
||||
prefix_chunk: Size::from_bytes(0),
|
||||
rest: uniform
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl CastTarget {
|
||||
pub fn size(&self, cx: &CodegenCx) -> Size {
|
||||
match *self {
|
||||
CastTarget::Uniform(u) => u.total,
|
||||
CastTarget::Pair(a, b) => {
|
||||
(a.size.abi_align(a.align(cx)) + b.size)
|
||||
.abi_align(self.align(cx))
|
||||
}
|
||||
pub fn pair(a: Reg, b: Reg) -> CastTarget {
|
||||
CastTarget {
|
||||
prefix: [Some(a.kind), None, None, None, None, None, None, None],
|
||||
prefix_chunk: a.size,
|
||||
rest: Uniform::from(b)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn size(&self, cx: &CodegenCx) -> Size {
|
||||
(self.prefix_chunk * self.prefix.iter().filter(|x| x.is_some()).count() as u64)
|
||||
.abi_align(self.rest.align(cx)) + self.rest.total
|
||||
}
|
||||
|
||||
pub fn align(&self, cx: &CodegenCx) -> Align {
|
||||
match *self {
|
||||
CastTarget::Uniform(u) => u.align(cx),
|
||||
CastTarget::Pair(a, b) => {
|
||||
cx.data_layout().aggregate_align
|
||||
.max(a.align(cx))
|
||||
.max(b.align(cx))
|
||||
}
|
||||
}
|
||||
self.prefix.iter()
|
||||
.filter_map(|x| x.map(|kind| Reg { kind: kind, size: self.prefix_chunk }.align(cx)))
|
||||
.fold(cx.data_layout().aggregate_align.max(self.rest.align(cx)),
|
||||
|acc, align| acc.max(align))
|
||||
}
|
||||
|
||||
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
|
||||
match *self {
|
||||
CastTarget::Uniform(u) => u.llvm_type(cx),
|
||||
CastTarget::Pair(a, b) => {
|
||||
Type::struct_(cx, &[
|
||||
a.llvm_type(cx),
|
||||
b.llvm_type(cx)
|
||||
], false)
|
||||
let rest_ll_unit = self.rest.unit.llvm_type(cx);
|
||||
let rest_count = self.rest.total.bytes() / self.rest.unit.size.bytes();
|
||||
let rem_bytes = self.rest.total.bytes() % self.rest.unit.size.bytes();
|
||||
|
||||
if self.prefix.iter().all(|x| x.is_none()) {
|
||||
// Simplify to a single unit when there is no prefix and size <= unit size
|
||||
if self.rest.total <= self.rest.unit.size {
|
||||
return rest_ll_unit;
|
||||
}
|
||||
|
||||
// Simplify to array when all chunks are the same size and type
|
||||
if rem_bytes == 0 {
|
||||
return Type::array(&rest_ll_unit, rest_count);
|
||||
}
|
||||
}
|
||||
|
||||
// Create list of fields in the main structure
|
||||
let mut args: Vec<_> =
|
||||
self.prefix.iter().flat_map(|option_kind| option_kind.map(
|
||||
|kind| Reg { kind: kind, size: self.prefix_chunk }.llvm_type(cx)))
|
||||
.chain((0..rest_count).map(|_| rest_ll_unit))
|
||||
.collect();
|
||||
|
||||
// Append final integer
|
||||
if rem_bytes != 0 {
|
||||
// Only integers can be really split further.
|
||||
assert_eq!(self.rest.unit.kind, RegKind::Integer);
|
||||
args.push(Type::ix(cx, rem_bytes * 8));
|
||||
}
|
||||
|
||||
Type::struct_(cx, &args, false)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -8,50 +8,160 @@
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
use abi::{ArgType, FnType, LayoutExt, Reg, Uniform};
|
||||
use abi::{ArgAttribute, ArgType, CastTarget, FnType, LayoutExt, PassMode, Reg, RegKind, Uniform};
|
||||
use context::CodegenCx;
|
||||
use rustc::ty::layout::{self, Size};
|
||||
|
||||
use rustc::ty::layout::Size;
|
||||
fn extend_integer_width_mips(arg: &mut ArgType, bits: u64) {
|
||||
// Always sign extend u32 values on 64-bit mips
|
||||
if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
|
||||
if let layout::Int(i, signed) = scalar.value {
|
||||
if !signed && i.size().bits() == 32 {
|
||||
if let PassMode::Direct(ref mut attrs) = arg.mode {
|
||||
attrs.set(ArgAttribute::SExt);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
|
||||
ret: &mut ArgType<'tcx>,
|
||||
offset: &mut Size) {
|
||||
if !ret.layout.is_aggregate() {
|
||||
ret.extend_integer_width_to(64);
|
||||
arg.extend_integer_width_to(bits);
|
||||
}
|
||||
|
||||
fn bits_to_int_reg(bits: u64) -> Reg {
|
||||
if bits <= 8 {
|
||||
Reg::i8()
|
||||
} else if bits <= 16 {
|
||||
Reg::i16()
|
||||
} else if bits <= 32 {
|
||||
Reg::i32()
|
||||
} else {
|
||||
ret.make_indirect();
|
||||
*offset += cx.tcx.data_layout.pointer_size;
|
||||
Reg::i64()
|
||||
}
|
||||
}
|
||||
|
||||
fn classify_arg_ty(cx: &CodegenCx, arg: &mut ArgType, offset: &mut Size) {
|
||||
let dl = &cx.tcx.data_layout;
|
||||
let size = arg.layout.size;
|
||||
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align);
|
||||
fn float_reg<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &ArgType<'tcx>, i: usize) -> Option<Reg> {
|
||||
match ret.layout.field(cx, i).abi {
|
||||
layout::Abi::Scalar(ref scalar) => match scalar.value {
|
||||
layout::F32 => Some(Reg::f32()),
|
||||
layout::F64 => Some(Reg::f64()),
|
||||
_ => None
|
||||
},
|
||||
_ => None
|
||||
}
|
||||
}
|
||||
|
||||
if arg.layout.is_aggregate() {
|
||||
arg.cast_to(Uniform {
|
||||
unit: Reg::i64(),
|
||||
total: size
|
||||
});
|
||||
if !offset.is_abi_aligned(align) {
|
||||
arg.pad_with(Reg::i64());
|
||||
}
|
||||
} else {
|
||||
arg.extend_integer_width_to(64);
|
||||
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
|
||||
if !ret.layout.is_aggregate() {
|
||||
extend_integer_width_mips(ret, 64);
|
||||
return;
|
||||
}
|
||||
|
||||
*offset = offset.abi_align(align) + size.abi_align(align);
|
||||
let size = ret.layout.size;
|
||||
let bits = size.bits();
|
||||
if bits <= 128 {
|
||||
// Unlike other architectures which return aggregates in registers, MIPS n64 limits the
|
||||
// use of float registers to structures (not unions) containing exactly one or two
|
||||
// float fields.
|
||||
|
||||
if let layout::FieldPlacement::Arbitrary { .. } = ret.layout.fields {
|
||||
if ret.layout.fields.count() == 1 {
|
||||
if let Some(reg) = float_reg(cx, ret, 0) {
|
||||
ret.cast_to(reg);
|
||||
return;
|
||||
}
|
||||
} else if ret.layout.fields.count() == 2 {
|
||||
if let Some(reg0) = float_reg(cx, ret, 0) {
|
||||
if let Some(reg1) = float_reg(cx, ret, 1) {
|
||||
ret.cast_to(CastTarget::pair(reg0, reg1));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Cast to a uniform int structure
|
||||
ret.cast_to(Uniform {
|
||||
unit: bits_to_int_reg(bits),
|
||||
total: size
|
||||
});
|
||||
} else {
|
||||
ret.make_indirect();
|
||||
}
|
||||
}
|
||||
|
||||
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
|
||||
if !arg.layout.is_aggregate() {
|
||||
extend_integer_width_mips(arg, 64);
|
||||
return;
|
||||
}
|
||||
|
||||
let dl = &cx.tcx.data_layout;
|
||||
let size = arg.layout.size;
|
||||
let mut prefix = [None; 8];
|
||||
let mut prefix_index = 0;
|
||||
|
||||
match arg.layout.fields {
|
||||
layout::FieldPlacement::Array { .. } => {
|
||||
// Arrays are passed indirectly
|
||||
arg.make_indirect();
|
||||
return;
|
||||
}
|
||||
layout::FieldPlacement::Union(_) => {
|
||||
// Unions and are always treated as a series of 64-bit integer chunks
|
||||
},
|
||||
layout::FieldPlacement::Arbitrary { .. } => {
|
||||
// Structures are split up into a series of 64-bit integer chunks, but any aligned
|
||||
// doubles not part of another aggregate are passed as floats.
|
||||
let mut last_offset = Size::from_bytes(0);
|
||||
|
||||
for i in 0..arg.layout.fields.count() {
|
||||
let field = arg.layout.field(cx, i);
|
||||
let offset = arg.layout.fields.offset(i);
|
||||
|
||||
// We only care about aligned doubles
|
||||
if let layout::Abi::Scalar(ref scalar) = field.abi {
|
||||
if let layout::F64 = scalar.value {
|
||||
if offset.is_abi_aligned(dl.f64_align) {
|
||||
// Insert enough integers to cover [last_offset, offset)
|
||||
assert!(last_offset.is_abi_aligned(dl.f64_align));
|
||||
for _ in 0..((offset - last_offset).bits() / 64)
|
||||
.min((prefix.len() - prefix_index) as u64) {
|
||||
|
||||
prefix[prefix_index] = Some(RegKind::Integer);
|
||||
prefix_index += 1;
|
||||
}
|
||||
|
||||
if prefix_index == prefix.len() {
|
||||
break;
|
||||
}
|
||||
|
||||
prefix[prefix_index] = Some(RegKind::Float);
|
||||
prefix_index += 1;
|
||||
last_offset = offset + Reg::f64().size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Extract first 8 chunks as the prefix
|
||||
let rest_size = size - Size::from_bytes(8) * prefix_index as u64;
|
||||
arg.cast_to(CastTarget {
|
||||
prefix: prefix,
|
||||
prefix_chunk: Size::from_bytes(8),
|
||||
rest: Uniform { unit: Reg::i64(), total: rest_size }
|
||||
});
|
||||
}
|
||||
|
||||
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
|
||||
let mut offset = Size::from_bytes(0);
|
||||
if !fty.ret.is_ignore() {
|
||||
classify_ret_ty(cx, &mut fty.ret, &mut offset);
|
||||
classify_ret_ty(cx, &mut fty.ret);
|
||||
}
|
||||
|
||||
for arg in &mut fty.args {
|
||||
if arg.is_ignore() { continue; }
|
||||
classify_arg_ty(cx, arg, &mut offset);
|
||||
classify_arg_ty(cx, arg);
|
||||
}
|
||||
}
|
||||
|
@ -171,7 +171,7 @@ fn cast_target(cls: &[Option<Class>], size: Size) -> CastTarget {
|
||||
let mut target = CastTarget::from(lo);
|
||||
if size > offset {
|
||||
if let Some(hi) = reg_component(cls, &mut i, size - offset) {
|
||||
target = CastTarget::Pair(lo, hi);
|
||||
target = CastTarget::pair(lo, hi);
|
||||
}
|
||||
}
|
||||
assert_eq!(reg_component(cls, &mut i, Size::from_bytes(0)), None);
|
||||
|
Loading…
Reference in New Issue
Block a user