auto merge of #6147 : bjz/rust/numeric-traits, r=brson
After much discussion on IRC and #4819, we have decided to revert to the old naming of the `/` operator. This does not change its behavior. In making this change, we also have had to rename some of the methods in the `Integer` trait. Here is a list of the methods that have changed: - `Quot::quot` -> `Div::div` - `Rem::rem` - stays the same - `Integer::quot_rem` -> `Integer::div_rem` - `Integer::div` -> `Integer::div_floor` - `Integer::modulo` -> `Integer::mod_floor` - `Integer::div_mod` -> `Integer::div_mod_floor`
This commit is contained in:
commit
f67239fac3
@ -1467,8 +1467,8 @@ A complete list of the built-in language items follows:
|
||||
: Elements can be subtracted.
|
||||
`mul`
|
||||
: Elements can be multiplied.
|
||||
`quot`
|
||||
: Elements have a quotient operation.
|
||||
`div`
|
||||
: Elements have a division operation.
|
||||
`rem`
|
||||
: Elements have a remainder operation.
|
||||
`neg`
|
||||
@ -1857,7 +1857,7 @@ The default meaning of the operators on standard types is given here.
|
||||
Calls the `mul` method on the `core::ops::Mul` trait.
|
||||
`/`
|
||||
: Quotient.
|
||||
Calls the `quot` method on the `core::ops::Quot` trait.
|
||||
Calls the `div` method on the `core::ops::Div` trait.
|
||||
`%`
|
||||
: Remainder.
|
||||
Calls the `rem` method on the `core::ops::Rem` trait.
|
||||
|
@ -78,7 +78,7 @@ pub use ops::{Drop};
|
||||
#[cfg(stage0)]
|
||||
pub use ops::{Add, Sub, Mul, Div, Modulo, Neg, Not};
|
||||
#[cfg(not(stage0))]
|
||||
pub use ops::{Add, Sub, Mul, Quot, Rem, Neg, Not};
|
||||
pub use ops::{Add, Sub, Mul, Div, Rem, Neg, Not};
|
||||
pub use ops::{BitAnd, BitOr, BitXor};
|
||||
pub use ops::{Shl, Shr, Index};
|
||||
|
||||
|
@ -123,7 +123,7 @@ pub fn sub(x: f32, y: f32) -> f32 { return x - y; }
|
||||
pub fn mul(x: f32, y: f32) -> f32 { return x * y; }
|
||||
|
||||
#[inline(always)]
|
||||
pub fn quot(x: f32, y: f32) -> f32 { return x / y; }
|
||||
pub fn div(x: f32, y: f32) -> f32 { return x / y; }
|
||||
|
||||
#[inline(always)]
|
||||
pub fn rem(x: f32, y: f32) -> f32 { return x % y; }
|
||||
@ -279,16 +279,11 @@ impl Mul<f32,f32> for f32 {
|
||||
fn mul(&self, other: &f32) -> f32 { *self * *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
#[cfg(notest)]
|
||||
impl Div<f32,f32> for f32 {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &f32) -> f32 { *self / *other }
|
||||
}
|
||||
#[cfg(not(stage0),notest)]
|
||||
impl Quot<f32,f32> for f32 {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &f32) -> f32 { *self / *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
impl Modulo<f32,f32> for f32 {
|
||||
|
@ -149,7 +149,7 @@ pub fn sub(x: f64, y: f64) -> f64 { return x - y; }
|
||||
pub fn mul(x: f64, y: f64) -> f64 { return x * y; }
|
||||
|
||||
#[inline(always)]
|
||||
pub fn quot(x: f64, y: f64) -> f64 { return x / y; }
|
||||
pub fn div(x: f64, y: f64) -> f64 { return x / y; }
|
||||
|
||||
#[inline(always)]
|
||||
pub fn rem(x: f64, y: f64) -> f64 { return x % y; }
|
||||
@ -296,15 +296,10 @@ impl Sub<f64,f64> for f64 {
|
||||
impl Mul<f64,f64> for f64 {
|
||||
fn mul(&self, other: &f64) -> f64 { *self * *other }
|
||||
}
|
||||
#[cfg(stage0,notest)]
|
||||
#[cfg(notest)]
|
||||
impl Div<f64,f64> for f64 {
|
||||
fn div(&self, other: &f64) -> f64 { *self / *other }
|
||||
}
|
||||
#[cfg(not(stage0),notest)]
|
||||
impl Quot<f64,f64> for f64 {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &f64) -> f64 { *self / *other }
|
||||
}
|
||||
#[cfg(stage0,notest)]
|
||||
impl Modulo<f64,f64> for f64 {
|
||||
fn modulo(&self, other: &f64) -> f64 { *self % *other }
|
||||
|
@ -25,7 +25,7 @@ use libc::c_int;
|
||||
use num::{Zero, One, strconv};
|
||||
use prelude::*;
|
||||
|
||||
pub use f64::{add, sub, mul, quot, rem, lt, le, eq, ne, ge, gt};
|
||||
pub use f64::{add, sub, mul, div, rem, lt, le, eq, ne, ge, gt};
|
||||
pub use f64::logarithm;
|
||||
pub use f64::{acos, asin, atan2, cbrt, ceil, copysign, cosh, floor};
|
||||
pub use f64::{erf, erfc, exp, expm1, exp2, abs_sub};
|
||||
@ -692,16 +692,12 @@ impl Mul<float,float> for float {
|
||||
fn mul(&self, other: &float) -> float { *self * *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
#[cfg(notest)]
|
||||
impl Div<float,float> for float {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &float) -> float { *self / *other }
|
||||
}
|
||||
#[cfg(not(stage0),notest)]
|
||||
impl Quot<float,float> for float {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &float) -> float { *self / *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
impl Modulo<float,float> for float {
|
||||
#[inline(always)]
|
||||
|
@ -30,7 +30,7 @@ pub fn sub(x: T, y: T) -> T { x - y }
|
||||
#[inline(always)]
|
||||
pub fn mul(x: T, y: T) -> T { x * y }
|
||||
#[inline(always)]
|
||||
pub fn quot(x: T, y: T) -> T { x / y }
|
||||
pub fn div(x: T, y: T) -> T { x / y }
|
||||
|
||||
///
|
||||
/// Returns the remainder of y / x.
|
||||
@ -201,16 +201,11 @@ impl Mul<T,T> for T {
|
||||
fn mul(&self, other: &T) -> T { *self * *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
#[cfg(notest)]
|
||||
impl Div<T,T> for T {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &T) -> T { *self / *other }
|
||||
}
|
||||
#[cfg(not(stage0),notest)]
|
||||
impl Quot<T,T> for T {
|
||||
///
|
||||
/// Returns the integer quotient, truncated towards 0. As this behaviour reflects
|
||||
/// the underlying machine implementation it is more efficient than `Natural::div`.
|
||||
/// Integer division, truncated towards 0. As this behaviour reflects the underlying
|
||||
/// machine implementation it is more efficient than `Integer::div_floor`.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
@ -227,7 +222,7 @@ impl Quot<T,T> for T {
|
||||
/// ~~~
|
||||
///
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &T) -> T { *self / *other }
|
||||
fn div(&self, other: &T) -> T { *self / *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
@ -307,25 +302,25 @@ impl Integer for T {
|
||||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// assert!(( 8).div( 3) == 2);
|
||||
/// assert!(( 8).div(-3) == -3);
|
||||
/// assert!((-8).div( 3) == -3);
|
||||
/// assert!((-8).div(-3) == 2);
|
||||
/// assert!(( 8).div_floor( 3) == 2);
|
||||
/// assert!(( 8).div_floor(-3) == -3);
|
||||
/// assert!((-8).div_floor( 3) == -3);
|
||||
/// assert!((-8).div_floor(-3) == 2);
|
||||
///
|
||||
/// assert!(( 1).div( 2) == 0);
|
||||
/// assert!(( 1).div(-2) == -1);
|
||||
/// assert!((-1).div( 2) == -1);
|
||||
/// assert!((-1).div(-2) == 0);
|
||||
/// assert!(( 1).div_floor( 2) == 0);
|
||||
/// assert!(( 1).div_floor(-2) == -1);
|
||||
/// assert!((-1).div_floor( 2) == -1);
|
||||
/// assert!((-1).div_floor(-2) == 0);
|
||||
/// ~~~
|
||||
///
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &T) -> T {
|
||||
fn div_floor(&self, other: &T) -> T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.quot_rem(other) {
|
||||
(q, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => q - 1,
|
||||
(q, _) => q,
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => d - 1,
|
||||
(d, _) => d,
|
||||
}
|
||||
}
|
||||
|
||||
@ -333,25 +328,25 @@ impl Integer for T {
|
||||
/// Integer modulo, satisfying:
|
||||
///
|
||||
/// ~~~
|
||||
/// assert!(n.div(d) * d + n.modulo(d) == n)
|
||||
/// assert!(n.div_floor(d) * d + n.mod_floor(d) == n)
|
||||
/// ~~~
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ~~~
|
||||
/// assert!(( 8).modulo( 3) == 2);
|
||||
/// assert!(( 8).modulo(-3) == -1);
|
||||
/// assert!((-8).modulo( 3) == 1);
|
||||
/// assert!((-8).modulo(-3) == -2);
|
||||
/// assert!(( 8).mod_floor( 3) == 2);
|
||||
/// assert!(( 8).mod_floor(-3) == -1);
|
||||
/// assert!((-8).mod_floor( 3) == 1);
|
||||
/// assert!((-8).mod_floor(-3) == -2);
|
||||
///
|
||||
/// assert!(( 1).modulo( 2) == 1);
|
||||
/// assert!(( 1).modulo(-2) == -1);
|
||||
/// assert!((-1).modulo( 2) == 1);
|
||||
/// assert!((-1).modulo(-2) == -1);
|
||||
/// assert!(( 1).mod_floor( 2) == 1);
|
||||
/// assert!(( 1).mod_floor(-2) == -1);
|
||||
/// assert!((-1).mod_floor( 2) == 1);
|
||||
/// assert!((-1).mod_floor(-2) == -1);
|
||||
/// ~~~
|
||||
///
|
||||
#[inline(always)]
|
||||
fn modulo(&self, other: &T) -> T {
|
||||
fn mod_floor(&self, other: &T) -> T {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match *self % *other {
|
||||
@ -361,21 +356,21 @@ impl Integer for T {
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates `div` and `modulo` simultaneously
|
||||
/// Calculates `div_floor` and `mod_floor` simultaneously
|
||||
#[inline(always)]
|
||||
fn div_mod(&self, other: &T) -> (T,T) {
|
||||
fn div_mod_floor(&self, other: &T) -> (T,T) {
|
||||
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
|
||||
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
|
||||
match self.quot_rem(other) {
|
||||
(q, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => (q - 1, r + *other),
|
||||
(q, r) => (q, r),
|
||||
match self.div_rem(other) {
|
||||
(d, r) if (r > 0 && *other < 0)
|
||||
|| (r < 0 && *other > 0) => (d - 1, r + *other),
|
||||
(d, r) => (d, r),
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates `quot` (`\`) and `rem` (`%`) simultaneously
|
||||
/// Calculates `div` (`\`) and `rem` (`%`) simultaneously
|
||||
#[inline(always)]
|
||||
fn quot_rem(&self, other: &T) -> (T,T) {
|
||||
fn div_rem(&self, other: &T) -> (T,T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
@ -599,42 +594,42 @@ mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_quot_rem() {
|
||||
fn test_nd_qr(nd: (T,T), qr: (T,T)) {
|
||||
fn test_div_rem() {
|
||||
fn test_nd_dr(nd: (T,T), qr: (T,T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_quot_rem = (n / d, n % d);
|
||||
let combined_quot_rem = n.quot_rem(&d);
|
||||
let separate_div_rem = (n / d, n % d);
|
||||
let combined_div_rem = n.div_rem(&d);
|
||||
|
||||
assert_eq!(separate_quot_rem, qr);
|
||||
assert_eq!(combined_quot_rem, qr);
|
||||
assert_eq!(separate_div_rem, qr);
|
||||
assert_eq!(combined_div_rem, qr);
|
||||
|
||||
test_division_rule(nd, separate_quot_rem);
|
||||
test_division_rule(nd, combined_quot_rem);
|
||||
test_division_rule(nd, separate_div_rem);
|
||||
test_division_rule(nd, combined_div_rem);
|
||||
}
|
||||
|
||||
test_nd_qr(( 8, 3), ( 2, 2));
|
||||
test_nd_qr(( 8, -3), (-2, 2));
|
||||
test_nd_qr((-8, 3), (-2, -2));
|
||||
test_nd_qr((-8, -3), ( 2, -2));
|
||||
test_nd_dr(( 8, 3), ( 2, 2));
|
||||
test_nd_dr(( 8, -3), (-2, 2));
|
||||
test_nd_dr((-8, 3), (-2, -2));
|
||||
test_nd_dr((-8, -3), ( 2, -2));
|
||||
|
||||
test_nd_qr(( 1, 2), ( 0, 1));
|
||||
test_nd_qr(( 1, -2), ( 0, 1));
|
||||
test_nd_qr((-1, 2), ( 0, -1));
|
||||
test_nd_qr((-1, -2), ( 0, -1));
|
||||
test_nd_dr(( 1, 2), ( 0, 1));
|
||||
test_nd_dr(( 1, -2), ( 0, 1));
|
||||
test_nd_dr((-1, 2), ( 0, -1));
|
||||
test_nd_dr((-1, -2), ( 0, -1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_mod() {
|
||||
fn test_div_mod_floor() {
|
||||
fn test_nd_dm(nd: (T,T), dm: (T,T)) {
|
||||
let (n,d) = nd;
|
||||
let separate_div_mod = (n.div(&d), n.modulo(&d));
|
||||
let combined_div_mod = n.div_mod(&d);
|
||||
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
|
||||
let combined_div_mod_floor = n.div_mod_floor(&d);
|
||||
|
||||
assert_eq!(separate_div_mod, dm);
|
||||
assert_eq!(combined_div_mod, dm);
|
||||
assert_eq!(separate_div_mod_floor, dm);
|
||||
assert_eq!(combined_div_mod_floor, dm);
|
||||
|
||||
test_division_rule(nd, separate_div_mod);
|
||||
test_division_rule(nd, combined_div_mod);
|
||||
test_division_rule(nd, separate_div_mod_floor);
|
||||
test_division_rule(nd, combined_div_mod_floor);
|
||||
}
|
||||
|
||||
test_nd_dm(( 8, 3), ( 2, 2));
|
||||
|
@ -11,13 +11,11 @@
|
||||
//! An interface for numeric types
|
||||
use cmp::{Eq, Ord};
|
||||
#[cfg(stage0)]
|
||||
use ops::{Add, Sub, Mul, Neg};
|
||||
#[cfg(stage0)]
|
||||
use Quot = ops::Div;
|
||||
use ops::{Add, Sub, Mul, Div, Neg};
|
||||
#[cfg(stage0)]
|
||||
use Rem = ops::Modulo;
|
||||
#[cfg(not(stage0))]
|
||||
use ops::{Add, Sub, Mul, Quot, Rem, Neg};
|
||||
use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
||||
use ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
|
||||
use option::Option;
|
||||
use kinds::Copy;
|
||||
@ -32,7 +30,7 @@ pub trait Num: Eq + Zero + One
|
||||
+ Add<Self,Self>
|
||||
+ Sub<Self,Self>
|
||||
+ Mul<Self,Self>
|
||||
+ Quot<Self,Self>
|
||||
+ Div<Self,Self>
|
||||
+ Rem<Self,Self> {}
|
||||
|
||||
pub trait IntConvertible {
|
||||
@ -76,12 +74,13 @@ pub fn abs<T:Ord + Zero + Neg<T>>(v: T) -> T {
|
||||
|
||||
pub trait Integer: Num
|
||||
+ Orderable
|
||||
+ Quot<Self,Self>
|
||||
+ Div<Self,Self>
|
||||
+ Rem<Self,Self> {
|
||||
fn div(&self, other: &Self) -> Self;
|
||||
fn modulo(&self, other: &Self) -> Self;
|
||||
fn div_mod(&self, other: &Self) -> (Self,Self);
|
||||
fn quot_rem(&self, other: &Self) -> (Self,Self);
|
||||
fn div_rem(&self, other: &Self) -> (Self,Self);
|
||||
|
||||
fn div_floor(&self, other: &Self) -> Self;
|
||||
fn mod_floor(&self, other: &Self) -> Self;
|
||||
fn div_mod_floor(&self, other: &Self) -> (Self,Self);
|
||||
|
||||
fn gcd(&self, other: &Self) -> Self;
|
||||
fn lcm(&self, other: &Self) -> Self;
|
||||
@ -102,7 +101,7 @@ pub trait Round {
|
||||
pub trait Fractional: Num
|
||||
+ Orderable
|
||||
+ Round
|
||||
+ Quot<Self,Self> {
|
||||
+ Div<Self,Self> {
|
||||
fn recip(&self) -> Self;
|
||||
}
|
||||
|
||||
@ -226,7 +225,7 @@ pub trait Primitive: Num
|
||||
+ Add<Self,Self>
|
||||
+ Sub<Self,Self>
|
||||
+ Mul<Self,Self>
|
||||
+ Quot<Self,Self>
|
||||
+ Div<Self,Self>
|
||||
+ Rem<Self,Self> {
|
||||
// FIXME (#5527): These should be associated constants
|
||||
fn bits() -> uint;
|
||||
@ -371,7 +370,7 @@ pub trait FromStrRadix {
|
||||
/// - If code written to use this function doesn't care about it, it's
|
||||
/// probably assuming that `x^0` always equals `1`.
|
||||
///
|
||||
pub fn pow_with_uint<T:NumCast+One+Zero+Copy+Quot<T,T>+Mul<T,T>>(
|
||||
pub fn pow_with_uint<T:NumCast+One+Zero+Copy+Div<T,T>+Mul<T,T>>(
|
||||
radix: uint, pow: uint) -> T {
|
||||
let _0: T = Zero::zero();
|
||||
let _1: T = One::one();
|
||||
@ -413,13 +412,13 @@ pub fn test_num<T:Num + NumCast>(ten: T, two: T) {
|
||||
assert_eq!(ten.add(&two), cast(12));
|
||||
assert_eq!(ten.sub(&two), cast(8));
|
||||
assert_eq!(ten.mul(&two), cast(20));
|
||||
assert_eq!(ten.quot(&two), cast(5));
|
||||
assert_eq!(ten.div(&two), cast(5));
|
||||
assert_eq!(ten.rem(&two), cast(0));
|
||||
|
||||
assert_eq!(ten.add(&two), ten + two);
|
||||
assert_eq!(ten.sub(&two), ten - two);
|
||||
assert_eq!(ten.mul(&two), ten * two);
|
||||
assert_eq!(ten.quot(&two), ten / two);
|
||||
assert_eq!(ten.div(&two), ten / two);
|
||||
assert_eq!(ten.rem(&two), ten % two);
|
||||
}
|
||||
|
||||
|
@ -10,15 +10,13 @@
|
||||
|
||||
use core::cmp::{Ord, Eq};
|
||||
#[cfg(stage0)]
|
||||
use ops::{Add, Sub, Mul, Neg};
|
||||
#[cfg(stage0)]
|
||||
use Quot = ops::Div;
|
||||
use ops::{Add, Sub, Mul, Div, Neg};
|
||||
#[cfg(stage0)]
|
||||
use Rem = ops::Modulo;
|
||||
#[cfg(stage1)]
|
||||
#[cfg(stage2)]
|
||||
#[cfg(stage3)]
|
||||
use ops::{Add, Sub, Mul, Quot, Rem, Neg};
|
||||
use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
||||
use option::{None, Option, Some};
|
||||
use char;
|
||||
use str;
|
||||
@ -67,7 +65,7 @@ fn is_neg_inf<T:Eq+NumStrConv>(num: &T) -> bool {
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn is_neg_zero<T:Eq+One+Zero+NumStrConv+Quot<T,T>>(num: &T) -> bool {
|
||||
fn is_neg_zero<T:Eq+One+Zero+NumStrConv+Div<T,T>>(num: &T) -> bool {
|
||||
let _0: T = Zero::zero();
|
||||
let _1: T = One::one();
|
||||
|
||||
@ -180,7 +178,7 @@ static nan_buf: [u8, ..3] = ['N' as u8, 'a' as u8, 'N' as u8];
|
||||
* - Fails if `radix` < 2 or `radix` > 36.
|
||||
*/
|
||||
pub fn to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+NumStrConv+Copy+
|
||||
Quot<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
|
||||
Div<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
|
||||
num: &T, radix: uint, negative_zero: bool,
|
||||
sign: SignFormat, digits: SignificantDigits) -> (~[u8], bool) {
|
||||
if (radix as int) < 2 {
|
||||
@ -388,7 +386,7 @@ pub fn to_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+NumStrConv+Copy+
|
||||
*/
|
||||
#[inline(always)]
|
||||
pub fn to_str_common<T:NumCast+Zero+One+Eq+Ord+NumStrConv+Copy+
|
||||
Quot<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
|
||||
Div<T,T>+Neg<T>+Rem<T,T>+Mul<T,T>>(
|
||||
num: &T, radix: uint, negative_zero: bool,
|
||||
sign: SignFormat, digits: SignificantDigits) -> (~str, bool) {
|
||||
let (bytes, special) = to_str_bytes_common(num, radix,
|
||||
@ -441,7 +439,7 @@ priv static DIGIT_E_RADIX: uint = ('e' as uint) - ('a' as uint) + 11u;
|
||||
* - Fails if `radix` > 18 and `special == true` due to conflict
|
||||
* between digit and lowest first character in `inf` and `NaN`, the `'i'`.
|
||||
*/
|
||||
pub fn from_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Copy+Quot<T,T>+
|
||||
pub fn from_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Copy+Div<T,T>+
|
||||
Mul<T,T>+Sub<T,T>+Neg<T>+Add<T,T>+
|
||||
NumStrConv>(
|
||||
buf: &[u8], radix: uint, negative: bool, fractional: bool,
|
||||
@ -638,7 +636,7 @@ pub fn from_str_bytes_common<T:NumCast+Zero+One+Eq+Ord+Copy+Quot<T,T>+
|
||||
* `from_str_bytes_common()`, for details see there.
|
||||
*/
|
||||
#[inline(always)]
|
||||
pub fn from_str_common<T:NumCast+Zero+One+Eq+Ord+Copy+Quot<T,T>+Mul<T,T>+
|
||||
pub fn from_str_common<T:NumCast+Zero+One+Eq+Ord+Copy+Div<T,T>+Mul<T,T>+
|
||||
Sub<T,T>+Neg<T>+Add<T,T>+NumStrConv>(
|
||||
buf: &str, radix: uint, negative: bool, fractional: bool,
|
||||
special: bool, exponent: ExponentFormat, empty_zero: bool,
|
||||
|
@ -31,7 +31,7 @@ pub fn sub(x: T, y: T) -> T { x - y }
|
||||
#[inline(always)]
|
||||
pub fn mul(x: T, y: T) -> T { x * y }
|
||||
#[inline(always)]
|
||||
pub fn quot(x: T, y: T) -> T { x / y }
|
||||
pub fn div(x: T, y: T) -> T { x / y }
|
||||
#[inline(always)]
|
||||
pub fn rem(x: T, y: T) -> T { x % y }
|
||||
|
||||
@ -166,16 +166,11 @@ impl Mul<T,T> for T {
|
||||
fn mul(&self, other: &T) -> T { *self * *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
#[cfg(notest)]
|
||||
impl Div<T,T> for T {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &T) -> T { *self / *other }
|
||||
}
|
||||
#[cfg(not(stage0),notest)]
|
||||
impl Quot<T,T> for T {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &T) -> T { *self / *other }
|
||||
}
|
||||
|
||||
#[cfg(stage0,notest)]
|
||||
impl Modulo<T,T> for T {
|
||||
@ -197,23 +192,23 @@ impl Neg<T> for T {
|
||||
impl Unsigned for T {}
|
||||
|
||||
impl Integer for T {
|
||||
/// Unsigned integer division. Returns the same result as `quot` (`/`).
|
||||
/// Calculates `div` (`\`) and `rem` (`%`) simultaneously
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &T) -> T { *self / *other }
|
||||
|
||||
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||
#[inline(always)]
|
||||
fn modulo(&self, other: &T) -> T { *self / *other }
|
||||
|
||||
/// Calculates `div` and `modulo` simultaneously
|
||||
#[inline(always)]
|
||||
fn div_mod(&self, other: &T) -> (T,T) {
|
||||
fn div_rem(&self, other: &T) -> (T,T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
/// Calculates `quot` (`\`) and `rem` (`%`) simultaneously
|
||||
/// Unsigned integer division. Returns the same result as `div` (`/`).
|
||||
#[inline(always)]
|
||||
fn quot_rem(&self, other: &T) -> (T,T) {
|
||||
fn div_floor(&self, other: &T) -> T { *self / *other }
|
||||
|
||||
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
|
||||
#[inline(always)]
|
||||
fn mod_floor(&self, other: &T) -> T { *self / *other }
|
||||
|
||||
/// Calculates `div_floor` and `modulo_floor` simultaneously
|
||||
#[inline(always)]
|
||||
fn div_mod_floor(&self, other: &T) -> (T,T) {
|
||||
(*self / *other, *self % *other)
|
||||
}
|
||||
|
||||
|
@ -31,15 +31,9 @@ pub trait Mul<RHS,Result> {
|
||||
}
|
||||
|
||||
#[lang="div"]
|
||||
#[cfg(stage0)]
|
||||
pub trait Div<RHS,Result> {
|
||||
fn div(&self, rhs: &RHS) -> Result;
|
||||
}
|
||||
#[lang="quot"]
|
||||
#[cfg(not(stage0))]
|
||||
pub trait Quot<RHS,Result> {
|
||||
fn quot(&self, rhs: &RHS) -> Result;
|
||||
}
|
||||
|
||||
#[lang="modulo"]
|
||||
#[cfg(stage0)]
|
||||
|
@ -17,7 +17,7 @@ pub use kinds::{Const, Copy, Owned, Durable};
|
||||
#[cfg(stage0)]
|
||||
pub use ops::{Add, Sub, Mul, Div, Modulo, Neg, Not};
|
||||
#[cfg(not(stage0))]
|
||||
pub use ops::{Add, Sub, Mul, Quot, Rem, Neg, Not};
|
||||
pub use ops::{Add, Sub, Mul, Div, Rem, Neg, Not};
|
||||
pub use ops::{BitAnd, BitOr, BitXor};
|
||||
pub use ops::{Drop};
|
||||
pub use ops::{Shl, Shr, Index};
|
||||
|
@ -279,7 +279,7 @@ pub fn eval_const_expr_partial(tcx: middle::ty::ctxt, e: @expr)
|
||||
add => Ok(const_float(a + b)),
|
||||
subtract => Ok(const_float(a - b)),
|
||||
mul => Ok(const_float(a * b)),
|
||||
quot => Ok(const_float(a / b)),
|
||||
div => Ok(const_float(a / b)),
|
||||
rem => Ok(const_float(a % b)),
|
||||
eq => fromb(a == b),
|
||||
lt => fromb(a < b),
|
||||
@ -295,8 +295,8 @@ pub fn eval_const_expr_partial(tcx: middle::ty::ctxt, e: @expr)
|
||||
add => Ok(const_int(a + b)),
|
||||
subtract => Ok(const_int(a - b)),
|
||||
mul => Ok(const_int(a * b)),
|
||||
quot if b == 0 => Err(~"attempted quotient with a divisor of zero"),
|
||||
quot => Ok(const_int(a / b)),
|
||||
div if b == 0 => Err(~"attempted to divide by zero"),
|
||||
div => Ok(const_int(a / b)),
|
||||
rem if b == 0 => Err(~"attempted remainder with a divisor of zero"),
|
||||
rem => Ok(const_int(a % b)),
|
||||
and | bitand => Ok(const_int(a & b)),
|
||||
@ -317,8 +317,8 @@ pub fn eval_const_expr_partial(tcx: middle::ty::ctxt, e: @expr)
|
||||
add => Ok(const_uint(a + b)),
|
||||
subtract => Ok(const_uint(a - b)),
|
||||
mul => Ok(const_uint(a * b)),
|
||||
quot if b == 0 => Err(~"attempted quotient with a divisor of zero"),
|
||||
quot => Ok(const_uint(a / b)),
|
||||
div if b == 0 => Err(~"attempted to divide by zero"),
|
||||
div => Ok(const_uint(a / b)),
|
||||
rem if b == 0 => Err(~"attempted remainder with a divisor of zero"),
|
||||
rem => Ok(const_uint(a % b)),
|
||||
and | bitand => Ok(const_uint(a & b)),
|
||||
|
@ -42,7 +42,7 @@ pub enum LangItem {
|
||||
AddTraitLangItem, // 5
|
||||
SubTraitLangItem, // 6
|
||||
MulTraitLangItem, // 7
|
||||
QuotTraitLangItem, // 8
|
||||
DivTraitLangItem, // 8
|
||||
RemTraitLangItem, // 9
|
||||
NegTraitLangItem, // 10
|
||||
NotTraitLangItem, // 11
|
||||
@ -105,7 +105,7 @@ pub impl LanguageItems {
|
||||
5 => "add",
|
||||
6 => "sub",
|
||||
7 => "mul",
|
||||
8 => "quot",
|
||||
8 => "div",
|
||||
9 => "rem",
|
||||
10 => "neg",
|
||||
11 => "not",
|
||||
@ -167,8 +167,8 @@ pub impl LanguageItems {
|
||||
pub fn mul_trait(&const self) -> def_id {
|
||||
self.items[MulTraitLangItem as uint].get()
|
||||
}
|
||||
pub fn quot_trait(&const self) -> def_id {
|
||||
self.items[QuotTraitLangItem as uint].get()
|
||||
pub fn div_trait(&const self) -> def_id {
|
||||
self.items[DivTraitLangItem as uint].get()
|
||||
}
|
||||
pub fn rem_trait(&const self) -> def_id {
|
||||
self.items[RemTraitLangItem as uint].get()
|
||||
@ -268,7 +268,7 @@ fn LanguageItemCollector<'r>(crate: @crate,
|
||||
item_refs.insert(@~"add", AddTraitLangItem as uint);
|
||||
item_refs.insert(@~"sub", SubTraitLangItem as uint);
|
||||
item_refs.insert(@~"mul", MulTraitLangItem as uint);
|
||||
item_refs.insert(@~"quot", QuotTraitLangItem as uint);
|
||||
item_refs.insert(@~"div", DivTraitLangItem as uint);
|
||||
item_refs.insert(@~"rem", RemTraitLangItem as uint);
|
||||
item_refs.insert(@~"neg", NegTraitLangItem as uint);
|
||||
item_refs.insert(@~"not", NotTraitLangItem as uint);
|
||||
|
@ -33,7 +33,7 @@ use syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op};
|
||||
use syntax::ast::{expr_binary, expr_break, expr_field};
|
||||
use syntax::ast::{expr_fn_block, expr_index, expr_method_call, expr_path};
|
||||
use syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
|
||||
use syntax::ast::{def_upvar, def_use, def_variant, quot, eq};
|
||||
use syntax::ast::{def_upvar, def_use, def_variant, div, eq};
|
||||
use syntax::ast::{expr, expr_again, expr_assign_op};
|
||||
use syntax::ast::{expr_index, expr_loop};
|
||||
use syntax::ast::{expr_path, expr_struct, expr_unary, fn_decl};
|
||||
@ -4901,9 +4901,9 @@ pub impl Resolver {
|
||||
self.add_fixed_trait_for_expr(expr.id,
|
||||
self.lang_items.mul_trait());
|
||||
}
|
||||
expr_binary(quot, _, _) | expr_assign_op(quot, _, _) => {
|
||||
expr_binary(div, _, _) | expr_assign_op(div, _, _) => {
|
||||
self.add_fixed_trait_for_expr(expr.id,
|
||||
self.lang_items.quot_trait());
|
||||
self.lang_items.div_trait());
|
||||
}
|
||||
expr_binary(rem, _, _) | expr_assign_op(rem, _, _) => {
|
||||
self.add_fixed_trait_for_expr(expr.id,
|
||||
|
@ -777,10 +777,10 @@ pub fn cast_shift_rhs(op: ast::binop,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fail_if_zero(cx: block, span: span, quotrem: ast::binop,
|
||||
pub fn fail_if_zero(cx: block, span: span, divrem: ast::binop,
|
||||
rhs: ValueRef, rhs_t: ty::t) -> block {
|
||||
let text = if quotrem == ast::quot {
|
||||
@~"attempted quotient with a divisor of zero"
|
||||
let text = if divrem == ast::div {
|
||||
@~"attempted to divide by zero"
|
||||
} else {
|
||||
@~"attempted remainder with a divisor of zero"
|
||||
};
|
||||
|
@ -270,7 +270,7 @@ fn const_expr_unadjusted(cx: @CrateContext, e: @ast::expr) -> ValueRef {
|
||||
if is_float { llvm::LLVMConstFMul(te1, te2) }
|
||||
else { llvm::LLVMConstMul(te1, te2) }
|
||||
}
|
||||
ast::quot => {
|
||||
ast::div => {
|
||||
if is_float { llvm::LLVMConstFDiv(te1, te2) }
|
||||
else if signed { llvm::LLVMConstSDiv(te1, te2) }
|
||||
else { llvm::LLVMConstUDiv(te1, te2) }
|
||||
|
@ -1435,7 +1435,7 @@ fn trans_eager_binop(bcx: block,
|
||||
if is_float { FMul(bcx, lhs, rhs) }
|
||||
else { Mul(bcx, lhs, rhs) }
|
||||
}
|
||||
ast::quot => {
|
||||
ast::div => {
|
||||
if is_float {
|
||||
FDiv(bcx, lhs, rhs)
|
||||
} else {
|
||||
|
@ -4134,7 +4134,7 @@ pub fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool {
|
||||
ast::add => opcat_add,
|
||||
ast::subtract => opcat_sub,
|
||||
ast::mul => opcat_mult,
|
||||
ast::quot => opcat_mult,
|
||||
ast::div => opcat_mult,
|
||||
ast::rem => opcat_mult,
|
||||
ast::and => opcat_logic,
|
||||
ast::or => opcat_logic,
|
||||
|
@ -293,10 +293,10 @@ impl Mul<BigUint, BigUint> for BigUint {
|
||||
}
|
||||
}
|
||||
|
||||
impl Quot<BigUint, BigUint> for BigUint {
|
||||
impl Div<BigUint, BigUint> for BigUint {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &BigUint) -> BigUint {
|
||||
let (q, _) = self.quot_rem(other);
|
||||
fn div(&self, other: &BigUint) -> BigUint {
|
||||
let (q, _) = self.div_rem(other);
|
||||
return q;
|
||||
}
|
||||
}
|
||||
@ -304,7 +304,7 @@ impl Quot<BigUint, BigUint> for BigUint {
|
||||
impl Rem<BigUint, BigUint> for BigUint {
|
||||
#[inline(always)]
|
||||
fn rem(&self, other: &BigUint) -> BigUint {
|
||||
let (_, r) = self.quot_rem(other);
|
||||
let (_, r) = self.div_rem(other);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
@ -316,19 +316,24 @@ impl Neg<BigUint> for BigUint {
|
||||
|
||||
impl Integer for BigUint {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &BigUint) -> BigUint {
|
||||
let (d, _) = self.div_mod(other);
|
||||
fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) {
|
||||
self.div_mod_floor(other)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_floor(&self, other: &BigUint) -> BigUint {
|
||||
let (d, _) = self.div_mod_floor(other);
|
||||
return d;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn modulo(&self, other: &BigUint) -> BigUint {
|
||||
let (_, m) = self.div_mod(other);
|
||||
fn mod_floor(&self, other: &BigUint) -> BigUint {
|
||||
let (_, m) = self.div_mod_floor(other);
|
||||
return m;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_mod(&self, other: &BigUint) -> (BigUint, BigUint) {
|
||||
fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) {
|
||||
if other.is_zero() { fail!() }
|
||||
if self.is_zero() { return (Zero::zero(), Zero::zero()); }
|
||||
if *other == One::one() { return (copy *self, Zero::zero()); }
|
||||
@ -346,11 +351,11 @@ impl Integer for BigUint {
|
||||
shift += 1;
|
||||
}
|
||||
assert!(shift < BigDigit::bits);
|
||||
let (d, m) = div_mod_inner(self << shift, other << shift);
|
||||
let (d, m) = div_mod_floor_inner(self << shift, other << shift);
|
||||
return (d, m >> shift);
|
||||
|
||||
#[inline(always)]
|
||||
fn div_mod_inner(a: BigUint, b: BigUint) -> (BigUint, BigUint) {
|
||||
fn div_mod_floor_inner(a: BigUint, b: BigUint) -> (BigUint, BigUint) {
|
||||
let mut m = a;
|
||||
let mut d = Zero::zero::<BigUint>();
|
||||
let mut n = 1;
|
||||
@ -409,11 +414,6 @@ impl Integer for BigUint {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quot_rem(&self, other: &BigUint) -> (BigUint, BigUint) {
|
||||
self.div_mod(other)
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
*
|
||||
@ -485,7 +485,7 @@ impl ToStrRadix for BigUint {
|
||||
let mut result = ~[];
|
||||
let mut m = n;
|
||||
while m > divider {
|
||||
let (d, m0) = m.div_mod(÷r);
|
||||
let (d, m0) = m.div_mod_floor(÷r);
|
||||
result += [m0.to_uint() as BigDigit];
|
||||
m = d;
|
||||
}
|
||||
@ -894,10 +894,10 @@ impl Mul<BigInt, BigInt> for BigInt {
|
||||
}
|
||||
}
|
||||
|
||||
impl Quot<BigInt, BigInt> for BigInt {
|
||||
impl Div<BigInt, BigInt> for BigInt {
|
||||
#[inline(always)]
|
||||
fn quot(&self, other: &BigInt) -> BigInt {
|
||||
let (q, _) = self.quot_rem(other);
|
||||
fn div(&self, other: &BigInt) -> BigInt {
|
||||
let (q, _) = self.div_rem(other);
|
||||
return q;
|
||||
}
|
||||
}
|
||||
@ -905,7 +905,7 @@ impl Quot<BigInt, BigInt> for BigInt {
|
||||
impl Rem<BigInt, BigInt> for BigInt {
|
||||
#[inline(always)]
|
||||
fn rem(&self, other: &BigInt) -> BigInt {
|
||||
let (_, r) = self.quot_rem(other);
|
||||
let (_, r) = self.div_rem(other);
|
||||
return r;
|
||||
}
|
||||
}
|
||||
@ -919,21 +919,36 @@ impl Neg<BigInt> for BigInt {
|
||||
|
||||
impl Integer for BigInt {
|
||||
#[inline(always)]
|
||||
fn div(&self, other: &BigInt) -> BigInt {
|
||||
let (d, _) = self.div_mod(other);
|
||||
fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
|
||||
// r.sign == self.sign
|
||||
let (d_ui, r_ui) = self.data.div_mod_floor(&other.data);
|
||||
let d = BigInt::from_biguint(Plus, d_ui);
|
||||
let r = BigInt::from_biguint(Plus, r_ui);
|
||||
match (self.sign, other.sign) {
|
||||
(_, Zero) => fail!(),
|
||||
(Plus, Plus) | (Zero, Plus) => ( d, r),
|
||||
(Plus, Minus) | (Zero, Minus) => (-d, r),
|
||||
(Minus, Plus) => (-d, -r),
|
||||
(Minus, Minus) => ( d, -r)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_floor(&self, other: &BigInt) -> BigInt {
|
||||
let (d, _) = self.div_mod_floor(other);
|
||||
return d;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn modulo(&self, other: &BigInt) -> BigInt {
|
||||
let (_, m) = self.div_mod(other);
|
||||
fn mod_floor(&self, other: &BigInt) -> BigInt {
|
||||
let (_, m) = self.div_mod_floor(other);
|
||||
return m;
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_mod(&self, other: &BigInt) -> (BigInt, BigInt) {
|
||||
fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) {
|
||||
// m.sign == other.sign
|
||||
let (d_ui, m_ui) = self.data.quot_rem(&other.data);
|
||||
let (d_ui, m_ui) = self.data.div_rem(&other.data);
|
||||
let d = BigInt::from_biguint(Plus, d_ui),
|
||||
m = BigInt::from_biguint(Plus, m_ui);
|
||||
match (self.sign, other.sign) {
|
||||
@ -953,21 +968,6 @@ impl Integer for BigInt {
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quot_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
|
||||
// r.sign == self.sign
|
||||
let (q_ui, r_ui) = self.data.div_mod(&other.data);
|
||||
let q = BigInt::from_biguint(Plus, q_ui);
|
||||
let r = BigInt::from_biguint(Plus, r_ui);
|
||||
match (self.sign, other.sign) {
|
||||
(_, Zero) => fail!(),
|
||||
(Plus, Plus) | (Zero, Plus) => ( q, r),
|
||||
(Plus, Minus) | (Zero, Minus) => (-q, r),
|
||||
(Minus, Plus) => (-q, -r),
|
||||
(Minus, Minus) => ( q, -r)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the Greatest Common Divisor (GCD) of the number and `other`
|
||||
*
|
||||
@ -1100,8 +1100,6 @@ pub impl BigInt {
|
||||
|
||||
#[cfg(test)]
|
||||
mod biguint_tests {
|
||||
|
||||
use core::*;
|
||||
use core::num::{IntConvertible, Zero, One, FromStrRadix};
|
||||
use core::cmp::{Less, Equal, Greater};
|
||||
use super::{BigUint, BigDigit};
|
||||
@ -1347,7 +1345,7 @@ mod biguint_tests {
|
||||
(&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1])
|
||||
];
|
||||
|
||||
static quot_rem_quadruples: &'static [(&'static [BigDigit],
|
||||
static div_rem_quadruples: &'static [(&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit])]
|
||||
@ -1371,7 +1369,7 @@ mod biguint_tests {
|
||||
assert!(b * a == c);
|
||||
}
|
||||
|
||||
for quot_rem_quadruples.each |elm| {
|
||||
for div_rem_quadruples.each |elm| {
|
||||
let (aVec, bVec, cVec, dVec) = *elm;
|
||||
let a = BigUint::from_slice(aVec);
|
||||
let b = BigUint::from_slice(bVec);
|
||||
@ -1384,7 +1382,7 @@ mod biguint_tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_quot_rem() {
|
||||
fn test_div_rem() {
|
||||
for mul_triples.each |elm| {
|
||||
let (aVec, bVec, cVec) = *elm;
|
||||
let a = BigUint::from_slice(aVec);
|
||||
@ -1392,21 +1390,21 @@ mod biguint_tests {
|
||||
let c = BigUint::from_slice(cVec);
|
||||
|
||||
if !a.is_zero() {
|
||||
assert!(c.quot_rem(&a) == (copy b, Zero::zero()));
|
||||
assert!(c.div_rem(&a) == (copy b, Zero::zero()));
|
||||
}
|
||||
if !b.is_zero() {
|
||||
assert!(c.quot_rem(&b) == (copy a, Zero::zero()));
|
||||
assert!(c.div_rem(&b) == (copy a, Zero::zero()));
|
||||
}
|
||||
}
|
||||
|
||||
for quot_rem_quadruples.each |elm| {
|
||||
for div_rem_quadruples.each |elm| {
|
||||
let (aVec, bVec, cVec, dVec) = *elm;
|
||||
let a = BigUint::from_slice(aVec);
|
||||
let b = BigUint::from_slice(bVec);
|
||||
let c = BigUint::from_slice(cVec);
|
||||
let d = BigUint::from_slice(dVec);
|
||||
|
||||
if !b.is_zero() { assert!(a.quot_rem(&b) == (c, d)); }
|
||||
if !b.is_zero() { assert!(a.div_rem(&b) == (c, d)); }
|
||||
}
|
||||
}
|
||||
|
||||
@ -1558,7 +1556,6 @@ mod biguint_tests {
|
||||
#[cfg(test)]
|
||||
mod bigint_tests {
|
||||
use super::{BigInt, BigUint, BigDigit, Sign, Minus, Zero, Plus};
|
||||
use core::*;
|
||||
use core::cmp::{Less, Equal, Greater};
|
||||
use core::num::{IntConvertible, Zero, One, FromStrRadix};
|
||||
|
||||
@ -1750,10 +1747,10 @@ mod bigint_tests {
|
||||
(&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1])
|
||||
];
|
||||
|
||||
static quot_rem_quadruples: &'static [(&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit])]
|
||||
static div_rem_quadruples: &'static [(&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit],
|
||||
&'static [BigDigit])]
|
||||
= &[
|
||||
(&[ 1], &[ 2], &[], &[1]),
|
||||
(&[ 1, 1], &[ 2], &[-1/2+1], &[1]),
|
||||
@ -1777,7 +1774,7 @@ mod bigint_tests {
|
||||
assert!((-b) * a == -c);
|
||||
}
|
||||
|
||||
for quot_rem_quadruples.each |elm| {
|
||||
for div_rem_quadruples.each |elm| {
|
||||
let (aVec, bVec, cVec, dVec) = *elm;
|
||||
let a = BigInt::from_slice(Plus, aVec);
|
||||
let b = BigInt::from_slice(Plus, bVec);
|
||||
@ -1790,9 +1787,9 @@ mod bigint_tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_mod() {
|
||||
fn test_div_mod_floor() {
|
||||
fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) {
|
||||
let (d, m) = a.div_mod(b);
|
||||
let (d, m) = a.div_mod_floor(b);
|
||||
if !m.is_zero() {
|
||||
assert!(m.sign == b.sign);
|
||||
}
|
||||
@ -1826,7 +1823,7 @@ mod bigint_tests {
|
||||
if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); }
|
||||
}
|
||||
|
||||
for quot_rem_quadruples.each |elm| {
|
||||
for div_rem_quadruples.each |elm| {
|
||||
let (aVec, bVec, cVec, dVec) = *elm;
|
||||
let a = BigInt::from_slice(Plus, aVec);
|
||||
let b = BigInt::from_slice(Plus, bVec);
|
||||
@ -1841,9 +1838,9 @@ mod bigint_tests {
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_quot_rem() {
|
||||
fn test_div_rem() {
|
||||
fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) {
|
||||
let (q, r) = a.quot_rem(b);
|
||||
let (q, r) = a.div_rem(b);
|
||||
if !r.is_zero() {
|
||||
assert!(r.sign == a.sign);
|
||||
}
|
||||
@ -1869,7 +1866,7 @@ mod bigint_tests {
|
||||
if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); }
|
||||
}
|
||||
|
||||
for quot_rem_quadruples.each |elm| {
|
||||
for div_rem_quadruples.each |elm| {
|
||||
let (aVec, bVec, cVec, dVec) = *elm;
|
||||
let a = BigInt::from_slice(Plus, aVec);
|
||||
let b = BigInt::from_slice(Plus, bVec);
|
||||
|
@ -102,9 +102,9 @@ impl<T: Copy + Num> Mul<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
|
||||
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
|
||||
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
|
||||
impl<T: Copy + Num> Quot<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
impl<T: Copy + Num> Div<Cmplx<T>, Cmplx<T>> for Cmplx<T> {
|
||||
#[inline]
|
||||
fn quot(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
fn div(&self, other: &Cmplx<T>) -> Cmplx<T> {
|
||||
let norm_sqr = other.norm_sqr();
|
||||
Cmplx::new((self.re*other.re + self.im*other.im) / norm_sqr,
|
||||
(self.im*other.re - self.re*other.im) / norm_sqr)
|
||||
@ -275,7 +275,7 @@ mod test {
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_quot() {
|
||||
fn test_div() {
|
||||
assert_eq!(_neg1_1i / _0_1i, _1_1i);
|
||||
for all_consts.each |&c| {
|
||||
if c != Zero::zero() {
|
||||
|
@ -143,9 +143,9 @@ impl<T: Copy + Num + Ord>
|
||||
|
||||
// (a/b) / (c/d) = (a*d)/(b*c)
|
||||
impl<T: Copy + Num + Ord>
|
||||
Quot<Ratio<T>,Ratio<T>> for Ratio<T> {
|
||||
Div<Ratio<T>,Ratio<T>> for Ratio<T> {
|
||||
#[inline]
|
||||
fn quot(&self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
fn div(&self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer)
|
||||
}
|
||||
}
|
||||
@ -395,7 +395,7 @@ mod test {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_quot() {
|
||||
fn test_div() {
|
||||
assert_eq!(_1 / _1_2, _2);
|
||||
assert_eq!(_3_2 / _1_2, _1 + _2);
|
||||
assert_eq!(_1 / _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2);
|
||||
@ -424,7 +424,7 @@ mod test {
|
||||
}
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_quot_0() {
|
||||
fn test_div_0() {
|
||||
let _a = _1 / _0;
|
||||
}
|
||||
}
|
||||
|
@ -389,7 +389,7 @@ pub enum binop {
|
||||
add,
|
||||
subtract,
|
||||
mul,
|
||||
quot,
|
||||
div,
|
||||
rem,
|
||||
and,
|
||||
or,
|
||||
|
@ -73,7 +73,7 @@ pub fn binop_to_str(op: binop) -> ~str {
|
||||
add => return ~"+",
|
||||
subtract => return ~"-",
|
||||
mul => return ~"*",
|
||||
quot => return ~"/",
|
||||
div => return ~"/",
|
||||
rem => return ~"%",
|
||||
and => return ~"&&",
|
||||
or => return ~"||",
|
||||
@ -96,7 +96,7 @@ pub fn binop_to_method_name(op: binop) -> Option<~str> {
|
||||
add => return Some(~"add"),
|
||||
subtract => return Some(~"sub"),
|
||||
mul => return Some(~"mul"),
|
||||
quot => return Some(~"quot"),
|
||||
div => return Some(~"div"),
|
||||
rem => return Some(~"rem"),
|
||||
bitxor => return Some(~"bitxor"),
|
||||
bitand => return Some(~"bitand"),
|
||||
@ -341,7 +341,7 @@ pub fn is_self(d: ast::def) -> bool {
|
||||
/// Maps a binary operator to its precedence
|
||||
pub fn operator_prec(op: ast::binop) -> uint {
|
||||
match op {
|
||||
mul | quot | rem => 12u,
|
||||
mul | div | rem => 12u,
|
||||
// 'as' sits between here with 11
|
||||
add | subtract => 10u,
|
||||
shl | shr => 9u,
|
||||
|
@ -19,7 +19,7 @@ use ast::{_mod, add, arg, arm, attribute, bind_by_ref, bind_infer};
|
||||
use ast::{bind_by_copy, bitand, bitor, bitxor, blk};
|
||||
use ast::{blk_check_mode, box};
|
||||
use ast::{crate, crate_cfg, decl, decl_item};
|
||||
use ast::{decl_local, default_blk, deref, quot, enum_def};
|
||||
use ast::{decl_local, default_blk, deref, div, enum_def};
|
||||
use ast::{expr, expr_, expr_addr_of, expr_match, expr_again};
|
||||
use ast::{expr_assign, expr_assign_op, expr_binary, expr_block};
|
||||
use ast::{expr_break, expr_call, expr_cast, expr_copy, expr_do_body};
|
||||
@ -1836,7 +1836,7 @@ pub impl Parser {
|
||||
token::PLUS => aop = add,
|
||||
token::MINUS => aop = subtract,
|
||||
token::STAR => aop = mul,
|
||||
token::SLASH => aop = quot,
|
||||
token::SLASH => aop = div,
|
||||
token::PERCENT => aop = rem,
|
||||
token::CARET => aop = bitxor,
|
||||
token::AND => aop = bitand,
|
||||
|
@ -371,7 +371,7 @@ impl<'self> to_bytes::IterBytes for StringRef<'self> {
|
||||
pub fn token_to_binop(tok: Token) -> Option<ast::binop> {
|
||||
match tok {
|
||||
BINOP(STAR) => Some(ast::mul),
|
||||
BINOP(SLASH) => Some(ast::quot),
|
||||
BINOP(SLASH) => Some(ast::div),
|
||||
BINOP(PERCENT) => Some(ast::rem),
|
||||
BINOP(PLUS) => Some(ast::add),
|
||||
BINOP(MINUS) => Some(ast::subtract),
|
||||
|
@ -1,5 +1,5 @@
|
||||
enum test {
|
||||
quot_zero = 1/0, //~ERROR expected constant: attempted quotient with a divisor of zero
|
||||
div_zero = 1/0, //~ERROR expected constant: attempted to divide by zero
|
||||
rem_zero = 1%0 //~ERROR expected constant: attempted remainder with a divisor of zero
|
||||
}
|
||||
|
||||
|
@ -8,7 +8,7 @@
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
// error-pattern:attempted quotient with a divisor of zero
|
||||
// error-pattern:attempted to divide by zero
|
||||
fn main() {
|
||||
let y = 0;
|
||||
let z = 1 / y;
|
||||
|
Loading…
x
Reference in New Issue
Block a user