auto merge of #14553 : reem/rust/nuke-owned-vectors, r=alexcrichton

I removed all remaining deprecated owned vectors from the docs. All example tests pass.
This commit is contained in:
bors 2014-05-31 01:06:40 -07:00
commit faa7ba75a7
5 changed files with 41 additions and 38 deletions

View File

@ -53,9 +53,8 @@ To return a Borrowed String Slice (&str) use the str helper function
~~~
use std::str;
let bytes = ~[104u8,105u8];
let x: Option<&str> = str::from_utf8(bytes);
let y: &str = x.unwrap();
let bytes = &[104u8,105u8];
let x: &str = str::from_utf8(bytes).unwrap();
~~~
To return an Owned String use the str helper function
@ -136,7 +135,7 @@ let index: Option<uint> = str.find_str("rand");
The [`Container`](../std/container/trait.Container.html) trait provides the `len` method.
~~~
let u: ~[u32] = ~[0, 1, 2];
let u: Vec<u32> = vec![0, 1, 2];
let v: &[u32] = &[0, 1, 2, 3];
let w: [u32, .. 5] = [0, 1, 2, 3, 4];
@ -148,7 +147,7 @@ println!("u: {}, v: {}, w: {}", u.len(), v.len(), w.len()); // 3, 4, 5
Use the [`iter`](../std/vec/trait.ImmutableVector.html#tymethod.iter) method.
~~~
let values: ~[int] = ~[1, 2, 3, 4, 5];
let values: Vec<int> = vec![1, 2, 3, 4, 5];
for value in values.iter() { // value: &int
println!("{}", *value);
}

View File

@ -85,7 +85,7 @@ To take as an argument a fragment of Rust code, write `$` followed by a name
`foo`.)
* `expr` (an expression. Examples: `2 + 2`; `if true then { 1 } else { 2 }`;
`f(42)`.)
* `ty` (a type. Examples: `int`, `~[(char, String)]`, `&T`.)
* `ty` (a type. Examples: `int`, `Vec<(char, String)>`, `&T`.)
* `pat` (a pattern, usually appearing in a `match` or on the left-hand side of
a declaration. Examples: `Some(t)`; `(17, 'a')`; `_`.)
* `block` (a sequence of actions. Example: `{ log(error, "hi"); return 12; }`)

View File

@ -198,14 +198,14 @@ Typically, tasks do not share memory but instead communicate amongst each other
```
fn main() {
let numbers = ~[1,2,3];
let numbers = vec![1,2,3];
let (tx, rx) = channel();
tx.send(numbers);
spawn(proc() {
let numbers = rx.recv();
println!("{}", numbers[0]);
println!("{}", *numbers.get(0));
})
}
```
@ -237,18 +237,18 @@ try to modify the previous example to continue using the variable `numbers`:
```ignore
fn main() {
let numbers = ~[1,2,3];
let numbers = vec![1,2,3];
let (tx, rx) = channel();
tx.send(numbers);
spawn(proc() {
let numbers = rx.recv();
println!("{}", numbers[0]);
println!("{}", numbers.get(0));
});
// Try to print a number from the original task
println!("{}", numbers[0]);
println!("{}", *numbers.get(0));
}
```
@ -256,7 +256,7 @@ This will result an error indicating that the value is no longer in scope:
```notrust
concurrency.rs:12:20: 12:27 error: use of moved value: 'numbers'
concurrency.rs:12 println!("{}", numbers[0]);
concurrency.rs:12 println!("{}", numbers.get(0));
^~~~~~~
```
@ -267,7 +267,7 @@ Let's see an example that uses the `clone` method to create copies of the data:
```
fn main() {
let numbers = ~[1,2,3];
let numbers = vec![1,2,3];
for num in range(0, 3) {
let (tx, rx) = channel();
@ -276,7 +276,7 @@ fn main() {
spawn(proc() {
let numbers = rx.recv();
println!("{:d}", numbers[num as uint]);
println!("{:d}", *numbers.get(num as uint));
})
}
}
@ -301,7 +301,7 @@ extern crate sync;
use sync::Arc;
fn main() {
let numbers = ~[1,2,3];
let numbers = vec![1,2,3];
let numbers = Arc::new(numbers);
for num in range(0, 3) {
@ -310,7 +310,7 @@ fn main() {
spawn(proc() {
let numbers = rx.recv();
println!("{:d}", numbers[num as uint]);
println!("{:d}", *numbers.get(num as uint));
})
}
}
@ -348,7 +348,7 @@ extern crate sync;
use sync::{Arc, Mutex};
fn main() {
let numbers = ~[1,2,3];
let numbers = vec![1,2,3];
let numbers_lock = Arc::new(Mutex::new(numbers));
for num in range(0, 3) {
@ -360,9 +360,13 @@ fn main() {
// Take the lock, along with exclusive access to the underlying array
let mut numbers = numbers_lock.lock();
numbers[num as uint] += 1;
println!("{}", numbers[num as uint]);
// This is ugly for now, but will be replaced by
// `numbers[num as uint] += 1` in the near future.
// See: https://github.com/mozilla/rust/issues/6515
*numbers.get_mut(num as uint) = *numbers.get_mut(num as uint) + 1;
println!("{}", *numbers.get(num as uint));
// When `numbers` goes out of scope the lock is dropped
})

View File

@ -886,8 +886,8 @@ fn main() {
// Equivalent to 'std::iter::range_step(0, 10, 2);'
range_step(0, 10, 2);
// Equivalent to 'foo(~[std::option::Some(1.0), std::option::None]);'
foo(~[Some(1.0), None]);
// Equivalent to 'foo(vec![std::option::Some(1.0), std::option::None]);'
foo(vec![Some(1.0), None]);
}
~~~~
@ -995,8 +995,8 @@ the function name.
fn iter<T>(seq: &[T], f: |T|) {
for elt in seq.iter() { f(elt); }
}
fn map<T, U>(seq: &[T], f: |T| -> U) -> ~[U] {
let mut acc = ~[];
fn map<T, U>(seq: &[T], f: |T| -> U) -> Vec<U> {
let mut acc = vec![];
for elt in seq.iter() { acc.push(f(elt)); }
acc
}
@ -1159,10 +1159,10 @@ except that they have the `extern` modifier.
~~~~
// Declares an extern fn, the ABI defaults to "C"
extern fn new_vec() -> ~[int] { ~[] }
extern fn new_int() -> int { 0 }
// Declares an extern fn with "stdcall" ABI
extern "stdcall" fn new_vec_stdcall() -> ~[int] { ~[] }
extern "stdcall" fn new_int_stdcall() -> int { 0 }
~~~~
Unlike normal functions, extern fns have an `extern "ABI" fn()`.
@ -1170,8 +1170,8 @@ This is the same type as the functions declared in an extern
block.
~~~~
# extern fn new_vec() -> ~[int] { ~[] }
let fptr: extern "C" fn() -> ~[int] = new_vec;
# extern fn new_int() -> int { 0 }
let fptr: extern "C" fn() -> int = new_int;
~~~~
Extern functions may be called directly from Rust code as Rust uses large,
@ -1509,7 +1509,7 @@ Implementation parameters are written after the `impl` keyword.
~~~~
# trait Seq<T> { }
impl<T> Seq<T> for ~[T] {
impl<T> Seq<T> for Vec<T> {
/* ... */
}
impl Seq<bool> for u32 {
@ -3347,7 +3347,7 @@ Such a definite-sized vector type is a first-class type, since its size is known
A vector without such a size is said to be of _indefinite_ size,
and is therefore not a _first-class_ type.
An indefinite-size vector can only be instantiated through a pointer type,
such as `&[T]` or `~[T]`.
such as `&[T]` or `Vec<T>`.
The kind of a vector type depends on the kind of its element type,
as with other simple structural types.

View File

@ -2062,7 +2062,7 @@ extern crate collections;
type Set<T> = collections::HashMap<T, ()>;
struct Stack<T> {
elements: ~[T]
elements: Vec<T>
}
enum Option<T> {
@ -2320,7 +2320,7 @@ trait Seq<T> {
fn length(&self) -> uint;
}
impl<T> Seq<T> for ~[T] {
impl<T> Seq<T> for Vec<T> {
fn length(&self) -> uint { self.len() }
}
~~~~
@ -2392,7 +2392,7 @@ generic types.
~~~~
# trait Printable { fn print(&self); }
fn print_all<T: Printable>(printable_things: ~[T]) {
fn print_all<T: Printable>(printable_things: Vec<T>) {
for thing in printable_things.iter() {
thing.print();
}
@ -2410,10 +2410,10 @@ as in this version of `print_all` that copies elements.
~~~
# trait Printable { fn print(&self); }
fn print_all<T: Printable + Clone>(printable_things: ~[T]) {
fn print_all<T: Printable + Clone>(printable_things: Vec<T>) {
let mut i = 0;
while i < printable_things.len() {
let copy_of_thing = printable_things[i].clone();
let copy_of_thing = printable_things.get(i).clone();
copy_of_thing.print();
i += 1;
}
@ -2438,11 +2438,11 @@ However, consider this function:
# fn new_circle() -> int { 1 }
trait Drawable { fn draw(&self); }
fn draw_all<T: Drawable>(shapes: ~[T]) {
fn draw_all<T: Drawable>(shapes: Vec<T>) {
for shape in shapes.iter() { shape.draw(); }
}
# let c: Circle = new_circle();
# draw_all(~[c]);
# draw_all(vec![c]);
~~~~
You can call that on a vector of circles, or a vector of rectangles
@ -2742,9 +2742,9 @@ mod farm {
# pub type Chicken = int;
# struct Human(int);
# impl Human { pub fn rest(&self) { } }
# pub fn make_me_a_farm() -> Farm { Farm { chickens: ~[], farmer: Human(0) } }
# pub fn make_me_a_farm() -> Farm { Farm { chickens: vec![], farmer: Human(0) } }
pub struct Farm {
chickens: ~[Chicken],
chickens: Vec<Chicken>,
pub farmer: Human
}