clean up BinaryHeap code

This commit is contained in:
Andrew Paseltiner 2014-12-22 07:13:09 -05:00
parent e64a8193b0
commit fe9f1beae2

View File

@ -11,15 +11,15 @@
//! A priority queue implemented with a binary heap.
//!
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
//! element is `O(1)`. Converting a vector to a priority queue can be done in-place, and has `O(n)`
//! complexity. A priority queue can also be converted to a sorted vector in-place, allowing it to
//! element is `O(1)`. Converting a vector to a binary heap can be done in-place, and has `O(n)`
//! complexity. A binary heap can also be converted to a sorted vector in-place, allowing it to
//! be used for an `O(n log n)` in-place heapsort.
//!
//! # Examples
//!
//! This is a larger example which implements [Dijkstra's algorithm][dijkstra]
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
//! It showcases how to use the `BinaryHeap` with custom types.
//! It shows how to use `BinaryHeap` with custom types.
//!
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
@ -32,7 +32,7 @@
//! #[deriving(Copy, Eq, PartialEq)]
//! struct State {
//! cost: uint,
//! position: uint
//! position: uint,
//! }
//!
//! // The priority queue depends on `Ord`.
@ -55,13 +55,13 @@
//! // Each node is represented as an `uint`, for a shorter implementation.
//! struct Edge {
//! node: uint,
//! cost: uint
//! cost: uint,
//! }
//!
//! // Dijkstra's shortest path algorithm.
//!
//! // Start at `start` and use `dist` to track the current shortest distance
//! // to each node. This implementation isn't memory efficient as it may leave duplicate
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
//! // nodes in the queue. It also uses `uint::MAX` as a sentinel value,
//! // for a simpler implementation.
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: uint, goal: uint) -> uint {
@ -71,21 +71,16 @@
//! let mut heap = BinaryHeap::new();
//!
//! // We're at `start`, with a zero cost
//! dist[start] = 0u;
//! heap.push(State { cost: 0u, position: start });
//! dist[start] = 0;
//! heap.push(State { cost: 0, position: start });
//!
//! // Examine the frontier with lower cost nodes first (min-heap)
//! loop {
//! let State { cost, position } = match heap.pop() {
//! None => break, // empty
//! Some(s) => s
//! };
//!
//! while let Some(State { cost, position }) = heap.pop() {
//! // Alternatively we could have continued to find all shortest paths
//! if position == goal { return cost }
//! if position == goal { return cost; }
//!
//! // Important as we may have already found a better way
//! if cost > dist[position] { continue }
//! if cost > dist[position] { continue; }
//!
//! // For each node we can reach, see if we can find a way with
//! // a lower cost going through this node
@ -108,7 +103,7 @@
//! fn main() {
//! // This is the directed graph we're going to use.
//! // The node numbers correspond to the different states,
//! // and the edge weights symbolises the cost of moving
//! // and the edge weights symbolize the cost of moving
//! // from one node to another.
//! // Note that the edges are one-way.
//! //
@ -126,7 +121,7 @@
//! //
//! // The graph is represented as an adjacency list where each index,
//! // corresponding to a node value, has a list of outgoing edges.
//! // Chosen for it's efficiency.
//! // Chosen for its efficiency.
//! let graph = vec![
//! // Node 0
//! vec![Edge { node: 2, cost: 10 },
@ -184,10 +179,11 @@ impl<T: Ord> BinaryHeap<T> {
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap: BinaryHeap<uint> = BinaryHeap::new();
/// let mut heap = BinaryHeap::new();
/// heap.push(4u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn new() -> BinaryHeap<T> { BinaryHeap{data: vec!(),} }
pub fn new() -> BinaryHeap<T> { BinaryHeap { data: vec![] } }
/// Creates an empty `BinaryHeap` with a specific capacity.
/// This preallocates enough memory for `capacity` elements,
@ -198,7 +194,8 @@ impl<T: Ord> BinaryHeap<T> {
///
/// ```
/// use std::collections::BinaryHeap;
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(10u);
/// let mut heap = BinaryHeap::with_capacity(10);
/// heap.push(4u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn with_capacity(capacity: uint) -> BinaryHeap<T> {
@ -214,17 +211,17 @@ impl<T: Ord> BinaryHeap<T> {
/// use std::collections::BinaryHeap;
/// let heap = BinaryHeap::from_vec(vec![9i, 1, 2, 7, 3, 2]);
/// ```
pub fn from_vec(xs: Vec<T>) -> BinaryHeap<T> {
let mut q = BinaryHeap{data: xs,};
let mut n = q.len() / 2;
pub fn from_vec(vec: Vec<T>) -> BinaryHeap<T> {
let mut heap = BinaryHeap { data: vec };
let mut n = heap.len() / 2;
while n > 0 {
n -= 1;
q.siftdown(n)
heap.sift_down(n);
}
q
heap
}
/// An iterator visiting all values in underlying vector, in
/// Returns an iterator visiting all values in the underlying vector, in
/// arbitrary order.
///
/// # Examples
@ -244,17 +241,17 @@ impl<T: Ord> BinaryHeap<T> {
}
/// Creates a consuming iterator, that is, one that moves each value out of
/// the binary heap in arbitrary order. The binary heap cannot be used
/// the binary heap in arbitrary order. The binary heap cannot be used
/// after calling this.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
/// let pq = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in pq.into_iter() {
/// for x in heap.into_iter() {
/// // x has type int, not &int
/// println!("{}", x);
/// }
@ -264,20 +261,19 @@ impl<T: Ord> BinaryHeap<T> {
IntoIter { iter: self.data.into_iter() }
}
/// Returns the greatest item in a queue, or `None` if it is empty.
/// Returns the greatest item in the binary heap, or `None` if it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// assert_eq!(heap.peek(), None);
///
/// heap.push(1i);
/// heap.push(5i);
/// heap.push(2i);
/// assert_eq!(heap.peek(), Some(&5i));
/// heap.push(5);
/// heap.push(2);
/// assert_eq!(heap.peek(), Some(&5));
///
/// ```
#[stable]
@ -285,15 +281,15 @@ impl<T: Ord> BinaryHeap<T> {
self.data.get(0)
}
/// Returns the number of elements the queue can hold without reallocating.
/// Returns the number of elements the binary heap can hold without reallocating.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(100u);
/// assert!(heap.capacity() >= 100u);
/// let mut heap = BinaryHeap::with_capacity(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn capacity(&self) -> uint { self.data.capacity() }
@ -313,13 +309,15 @@ impl<T: Ord> BinaryHeap<T> {
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
/// heap.reserve_exact(100u);
/// assert!(heap.capacity() >= 100u);
/// let mut heap = BinaryHeap::new();
/// heap.reserve_exact(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve_exact(&mut self, additional: uint) { self.data.reserve_exact(additional) }
pub fn reserve_exact(&mut self, additional: uint) {
self.data.reserve_exact(additional);
}
/// Reserves capacity for at least `additional` more elements to be inserted in the
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
@ -332,88 +330,82 @@ impl<T: Ord> BinaryHeap<T> {
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
/// heap.reserve(100u);
/// assert!(heap.capacity() >= 100u);
/// let mut heap = BinaryHeap::new();
/// heap.reserve(100);
/// assert!(heap.capacity() >= 100);
/// heap.push(4u);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn reserve(&mut self, additional: uint) {
self.data.reserve(additional)
self.data.reserve(additional);
}
/// Discards as much additional capacity as possible.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn shrink_to_fit(&mut self) {
self.data.shrink_to_fit()
self.data.shrink_to_fit();
}
/// Removes the greatest item from a queue and returns it, or `None` if it
/// Removes the greatest item from the binary heap and returns it, or `None` if it
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::from_vec(vec![1i, 3]);
///
/// assert_eq!(heap.pop(), Some(3i));
/// assert_eq!(heap.pop(), Some(1i));
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn pop(&mut self) -> Option<T> {
match self.data.pop() {
None => { None }
Some(mut item) => {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.siftdown(0);
}
Some(item)
self.data.pop().map(|mut item| {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.sift_down(0);
}
}
item
})
}
/// Pushes an item onto the queue.
/// Pushes an item onto the binary heap.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// heap.push(3i);
/// heap.push(5i);
/// heap.push(1i);
/// heap.push(5);
/// heap.push(1);
///
/// assert_eq!(heap.len(), 3);
/// assert_eq!(heap.peek(), Some(&5i));
/// assert_eq!(heap.peek(), Some(&5));
/// ```
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn push(&mut self, item: T) {
let old_len = self.len();
self.data.push(item);
self.siftup(0, old_len);
self.sift_up(0, old_len);
}
/// Pushes an item onto a queue then pops the greatest item off the queue in
/// Pushes an item onto the binary heap, then pops the greatest item off the queue in
/// an optimized fashion.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
/// heap.push(1i);
/// heap.push(5i);
/// heap.push(5);
///
/// assert_eq!(heap.push_pop(3i), 5);
/// assert_eq!(heap.push_pop(9i), 9);
/// assert_eq!(heap.push_pop(3), 5);
/// assert_eq!(heap.push_pop(9), 9);
/// assert_eq!(heap.len(), 2);
/// assert_eq!(heap.peek(), Some(&3i));
/// assert_eq!(heap.peek(), Some(&3));
/// ```
pub fn push_pop(&mut self, mut item: T) -> T {
match self.data.get_mut(0) {
@ -425,30 +417,29 @@ impl<T: Ord> BinaryHeap<T> {
},
}
self.siftdown(0);
self.sift_down(0);
item
}
/// Pops the greatest item off a queue then pushes an item onto the queue in
/// an optimized fashion. The push is done regardless of whether the queue
/// Pops the greatest item off the binary heap, then pushes an item onto the queue in
/// an optimized fashion. The push is done regardless of whether the binary heap
/// was empty.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let mut heap = BinaryHeap::new();
///
/// assert_eq!(heap.replace(1i), None);
/// assert_eq!(heap.replace(3i), Some(1i));
/// assert_eq!(heap.replace(3), Some(1));
/// assert_eq!(heap.len(), 1);
/// assert_eq!(heap.peek(), Some(&3i));
/// assert_eq!(heap.peek(), Some(&3));
/// ```
pub fn replace(&mut self, mut item: T) -> Option<T> {
if !self.is_empty() {
swap(&mut item, &mut self.data[0]);
self.siftdown(0);
self.sift_down(0);
Some(item)
} else {
self.push(item);
@ -463,7 +454,6 @@ impl<T: Ord> BinaryHeap<T> {
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4, 5, 6, 7]);
/// let vec = heap.into_vec();
///
@ -494,35 +484,34 @@ impl<T: Ord> BinaryHeap<T> {
while end > 1 {
end -= 1;
self.data.swap(0, end);
self.siftdown_range(0, end)
self.sift_down_range(0, end);
}
self.into_vec()
}
// The implementations of siftup and siftdown use unsafe blocks in
// The implementations of sift_up and sift_down use unsafe blocks in
// order to move an element out of the vector (leaving behind a
// zeroed element), shift along the others and move it back into the
// vector over the junk element. This reduces the constant factor
// vector over the junk element. This reduces the constant factor
// compared to using swaps, which involves twice as many moves.
fn siftup(&mut self, start: uint, mut pos: uint) {
fn sift_up(&mut self, start: uint, mut pos: uint) {
unsafe {
let new = replace(&mut self.data[pos], zeroed());
while pos > start {
let parent = (pos - 1) >> 1;
if new > self.data[parent] {
let x = replace(&mut self.data[parent], zeroed());
ptr::write(&mut self.data[pos], x);
pos = parent;
continue
}
break
if new <= self.data[parent] { break; }
let x = replace(&mut self.data[parent], zeroed());
ptr::write(&mut self.data[pos], x);
pos = parent;
}
ptr::write(&mut self.data[pos], new);
}
}
fn siftdown_range(&mut self, mut pos: uint, end: uint) {
fn sift_down_range(&mut self, mut pos: uint, end: uint) {
unsafe {
let start = pos;
let new = replace(&mut self.data[pos], zeroed());
@ -540,33 +529,31 @@ impl<T: Ord> BinaryHeap<T> {
}
ptr::write(&mut self.data[pos], new);
self.siftup(start, pos);
self.sift_up(start, pos);
}
}
fn siftdown(&mut self, pos: uint) {
fn sift_down(&mut self, pos: uint) {
let len = self.len();
self.siftdown_range(pos, len);
self.sift_down_range(pos, len);
}
/// Returns the length of the queue.
/// Returns the length of the binary heap.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn len(&self) -> uint { self.data.len() }
/// Returns true if the queue contains no elements
/// Checks if the binary heap is empty.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn is_empty(&self) -> bool { self.len() == 0 }
/// Clears the queue, returning an iterator over the removed elements.
/// Clears the binary heap, returning an iterator over the removed elements.
#[inline]
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn drain<'a>(&'a mut self) -> Drain<'a, T> {
Drain {
iter: self.data.drain(),
}
pub fn drain(&mut self) -> Drain<T> {
Drain { iter: self.data.drain() }
}
/// Drops all items from the queue.
/// Drops all items from the binary heap.
#[unstable = "matches collection reform specification, waiting for dust to settle"]
pub fn clear(&mut self) { self.drain(); }
}