Unfortunately older clang compilers don't support this argument, so the
bootstrap will fail. We don't actually really need to optimized the C code we
compile, however, as currently we're just compiling jemalloc and not much else.
The purpose of the translation item collector is to find all monomorphic instances of functions, methods and statics that need to be translated into LLVM IR in order to compile the current crate.
So far these instances have been discovered lazily during the trans path. For incremental compilation we want to know the set of these instances in advance, and that is what the trans::collect module provides.
In the future, incremental and regular translation will be driven by the collector implemented here.
This commit removes the `-D warnings` flag being passed through the makefiles to
all crates to instead be a crate attribute. We want these attributes always
applied for all our standard builds, and this is more amenable to Cargo-based
builds as well.
Note that all `deny(warnings)` attributes are gated with a `cfg(stage0)`
attribute currently to match the same semantics we have today
this makes sure the checks run before typeck (which might use the constant or const
function to calculate an array length) and gives prettier error messages in case of for
loops and such (since they aren't expanded yet).
fixes#30887
r? @pnkfelix
this makes sure the checks run before typeck (which might use the constant or const
function to calculate an array length) and gives prettier error messages in case of for
loops and such (since they aren't expanded yet).
Use arena allocation instead of reference counting for `Module`s to fix memory leaks from `Rc` cycles.
A module references its module children and its import resolutions, and an import resolution references the module defining the imported name, so there is a cycle whenever a module imports something from an ancestor module.
For example,
```rust
mod foo { // `foo` references `bar`.
fn baz() {}
mod bar { // `bar` references the import.
use foo::baz; // The import references `foo`.
}
}
```
I also re-enabled the use of `#[thread_local]` on AArch64. It was originally disabled in the PR that introduced AArch64 (#19790), but the reasons for this were not explained. `#[thread_local]` seems to work fine in my tests on AArch64, so I don't think this should be an issue.
cc @alexcrichton @akiss77
This mixes in additional information into the hash that is
passed to -C extra-filename. It can be used to further distinguish
the standard libraries if they must be installed next to each
other.
Closes#29559
Frankly, I'm not sure if this solves a real problem. It's meant to help with side-by-side and overlapping installations where there are two sets of libs in /usr, but there are other potential issues there as well, including that some of our artifacts don't use this extra-filename munging, and it's not something our installers can support at all.
cc @jauhien Do you still think this helps the Gentoo case?
Since `darwin` is really `apple-darwin`, the valgrind-rpass tests were not actually being run with valgrind on mac before. Also, the `HOST` check was completely wrong.
r? @alexcrichton
This mixes in additional information into the hash that is
passed to -C extra-filename. It can be used to further distinguish
the standard libraries if they must be installed next to each
other.
Closes#29559
It's been awhile since we last updated jemalloc, and there's likely some bugs
that have been fixed since the last version we're using, so let's try to update
again.
It's been awhile since we last updated jemalloc, and there's likely some bugs
that have been fixed since the last version we're using, so let's try to update
again.
this PR reverts previous ones, that tried to make `cc` to found `estdc++` in `/usr/local/lib`. It causes more trouble than it resolvs things: rustc become unbuildable if another version already exists in `/usr/local` (for example, `libstd-xxxx.so` is found in `/usr/local/lib` and in builddir).
so this PR tries another way to achieve build, but using the good linker for building. By default, rustc use `cc` for linking. But under OpenBSD, `cc` is gcc 4.2.1 from base, whereas we build with gcc 4.9 from ports. By linking using the compiler found at compile-time, we ensure that the compiler will found his own stdc++ library without trouble.
r? @alexcrichton
By default, rustc use `cc` as linker. Under OpenBSD, `cc` is gcc version 4.2.1.
So use the compiler found at configure-time for linking: it will be gcc 4.9.
It permits to resolv problem of finding -lestdc++ or -lgcc. For base gcc (4.2), there are in not standard path, whereas for ports gcc (4.9) there are in standard path.
It looks like #27937 accidentally switched the llvmdeps file from the target to
the host by accident, so be sure to use the right llvmdeps file which is built
for the target when building rustc_llvm
This handles cases when the LLVM used isn't configured will the 'usual' targets. Also, cases where LLVM is shared are also handled (ie with `LD_LIBRARY_PATH` etc).
This handles cases when the LLVM used isn't configured will the 'usual'
targets. Also, cases where LLVM is shared are also handled (ie with
`LD_LIBRARY_PATH` etc).
With this commit, metadata encoding and decoding can make use of thread-local encoding and decoding contexts. These allow implementers of `serialize::Encodable` and `Decodable` to access information and
datastructures that would otherwise not be available to them. For example, we can automatically translate def-id and span information during decoding because the decoding context knows which crate the data is decoded from. Or it allows to make `ty::Ty` decodable because the context has access to the `ty::ctxt` that is needed for creating `ty::Ty` instances.
Some notes:
- `tls::with_encoding_context()` and `tls::with_decoding_context()` (as opposed to their unsafe versions) try to prevent the TLS data getting out-of-sync by making sure that the encoder/decoder passed in is actually the same as the one stored in the context. This should prevent accidentally reading from the wrong decoder.
- There are no real tests in this PR. I had a unit tests for some of the core aspects of the TLS implementation but it was kind of brittle, a lot of code for mocking `ty::ctxt`, `crate_metadata`, etc and did actually test not so much. The code will soon be tested by the first incremental compilation auto-tests that rely on MIR being properly serialized. However, if people think that some tests should be added before this can land, I'll try to provide some that make sense.
r? @nikomatsakis
With this commit, metadata encoding and decoding can make use of
thread-local encoding and decoding contexts. These allow implementers
of serialize::Encodable and Decodable to access information and
datastructures that would otherwise not be available to them. For
example, we can automatically translate def-id and span information
during decoding because the decoding context knows which crate the
data is decoded from. Or it allows to make ty::Ty decodable because
the context has access to the ty::ctxt that is needed for creating
ty::Ty instances.
The `rsbegin.o` and `rsend.o` build products should not be generated
on non WinGnu platforms.
This is another path to resolving #30063 for non win-gnu targets.
(And it won't require a snapshot, unlike PR #30208.)
r? @alexcrichton
The `rsbegin.o` and `rsend.o` build products should not be generated
on non WinGnu platforms.
This is another path to resolving #30063 for non win-gnu targets.
(And it won't require a snapshot, unlike PR #30208.)
In #29932, I moved the location of TRPL, but I missed making the changes
in mk/tests.mk. This led to #30088 landing with a broken example.
As such, #30113 will need to land before this.