Give SliceIndex impls a test suite of girth befitting the implementation (and fix a UTF8 boundary check)
So one day I was writing something in my codebase that basically amounted to `impl SliceIndex for (Bound<usize>, Bound<usize>)`, and I said to myself:
*Boy, gee, golly! I never realized bounds checking was so tricky!*
At some point when I had around 60 lines of tests for it, I decided to go see how the standard library does it to see if I missed any edge cases. ...That's when I discovered that libcore only had about 40 lines of tests for slicing altogether, and none of them even used `..=`.
---
This PR includes:
* **Literally the first appearance of the word `get_unchecked_mut` in any directory named `test` or `tests`.**
* Likewise the first appearance of `get_mut` used with _any type of range argument_ in these directories.
* Tests for the panics on overflow with `..=`.
* I wanted to test on `[(); usize::MAX]` as well but that takes linear time in debug mode </3
* A horrible and ugly test-generating macro for the `should_panic` tests that increases the DRYness by a single order of magnitude (which IMO wasn't enough, but I didn't want to go any further and risk making the tests inaccessible to next guy).
* Same stuff for str!
* Actually, the existing `str` tests were pretty good. I just helped filled in the holes.
* [A fix for the bug it caught](https://github.com/rust-lang/rust/issues/50002). (only one ~~sadly~~)
Required moving all fulldeps tests depending on `rand` to different locations as
now there's multiple `rand` crates that can't be implicitly linked against.
Add slice::ExactChunks and ::ExactChunksMut iterators
These guarantee that always the requested slice size will be returned
and any leftoever elements at the end will be ignored. It allows llvm to
get rid of bounds checks in the code using the iterator.
This is inspired by the same iterators provided by ndarray.
Fixes https://github.com/rust-lang/rust/issues/47115
I'll add unit tests for all this if the general idea and behaviour makes sense for everybody.
Also see https://github.com/rust-lang/rust/issues/47115#issuecomment-354715511 for an example what this improves.
Deprecate [T]::rotate in favor of [T]::rotate_{left,right}.
Background
==========
Slices currently have an **unstable** [`rotate`] method which rotates
elements in the slice to the _left_ N positions. [Here][tracking] is the
tracking issue for this unstable feature.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
Proposal
========
Deprecate the [`rotate`] method and introduce `rotate_left` and
`rotate_right` methods.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
```
Justification
=============
I used this method today for my first time and (probably because I’m a
naive westerner who reads LTR) was surprised when the docs mentioned that
elements get rotated in a left-ward direction. I was in a situation
where I needed to shift elements in a right-ward direction and had to
context switch from the main problem I was working on and think how much
to rotate left in order to accomplish the right-ward rotation I needed.
Ruby’s `Array.rotate` shifts left-ward, Python’s `deque.rotate` shifts
right-ward. Both of their implementations allow passing negative numbers
to shift in the opposite direction respectively. The current `rotate`
implementation takes an unsigned integer argument which doesn't allow
the negative number behavior.
Introducing `rotate_left` and `rotate_right` would:
- remove ambiguity about direction (alleviating need to read docs 😉)
- make it easier for people who need to rotate right
[`rotate`]: https://doc.rust-lang.org/std/primitive.slice.html#method.rotate
[tracking]: https://github.com/rust-lang/rust/issues/41891
Background
==========
Slices currently have an unstable [`rotate`] method which rotates
elements in the slice to the _left_ N positions. [Here][tracking] is the
tracking issue for this unstable feature.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
Proposal
========
Deprecate the [`rotate`] method and introduce `rotate_left` and
`rotate_right` methods.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
```
Justification
=============
I used this method today for my first time and (probably because I’m a
naive westerner who reads LTR) was surprised when the docs mentioned that
elements get rotated in a left-ward direction. I was in a situation
where I needed to shift elements in a right-ward direction and had to
context switch from the main problem I was working on and think how much
to rotate left in order to accomplish the right-ward rotation I needed.
Ruby’s `Array.rotate` shifts left-ward, Python’s `deque.rotate` shifts
right-ward. Both of their implementations allow passing negative numbers
to shift in the opposite direction respectively.
Introducing `rotate_left` and `rotate_right` would:
- remove ambiguity about direction (alleviating need to read docs 😉)
- make it easier for people who need to rotate right
[`rotate`]: https://doc.rust-lang.org/std/primitive.slice.html#method.rotate
[tracking]: https://github.com/rust-lang/rust/issues/41891
std: Add a new wasm32-unknown-unknown target
This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this target.
* Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new target.
This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready".
### Building yourself
First you'll need to configure the build of LLVM and enable this target
```
$ ./configure --target=wasm32-unknown-unknown --set llvm.experimental-targets=WebAssembly
```
Next you'll want to remove any previously compiled LLVM as it needs to be rebuilt with WebAssembly support. You can do that with:
```
$ rm -rf build
```
And then you're good to go! A `./x.py build` should give you a rustc with the appropriate libstd target.
### Test support
Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is [still getting LLVM bugs fixed](https://reviews.llvm.org/D39866) to get that working and will take some time. Relatively simple programs all seem to work though!
In general I've only tested this with a local fork that makes use of LLVM 5 rather than our current LLVM 4 on master. The LLVM 4 WebAssembly backend AFAIK isn't broken per se but is likely missing bug fixes available on LLVM 5. I'm hoping though that we can decouple the LLVM 5 upgrade and adding this wasm target!
### But the modules generated are huge!
It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
Short-circuiting internal iteration with Iterator::try_fold & try_rfold
These are the core methods in terms of which the other methods (`fold`, `all`, `any`, `find`, `position`, `nth`, ...) can be implemented, allowing Iterator implementors to get the full goodness of internal iteration by only overriding one method (per direction).
Based off the `Try` trait, so works with both `Result` and `Option` (🎉https://github.com/rust-lang/rust/pull/42526). The `try_fold` rustdoc examples use `Option` and the `try_rfold` ones use `Result`.
AKA continuing in the vein of PRs https://github.com/rust-lang/rust/pull/44682 & https://github.com/rust-lang/rust/pull/44856 for more of `Iterator`.
New bench following the pattern from the latter of those:
```
test iter::bench_take_while_chain_ref_sum ... bench: 1,130,843 ns/iter (+/- 25,110)
test iter::bench_take_while_chain_sum ... bench: 362,530 ns/iter (+/- 391)
```
I also ran the benches without the `fold` & `rfold` overrides to test their new default impls, with basically no change. I left them there, though, to take advantage of existing overrides and because `AlwaysOk` has some sub-optimality due to https://github.com/rust-lang/rust/issues/43278 (which 45225 should fix).
If you're wondering why there are three type parameters, see issue https://github.com/rust-lang/rust/issues/45462
Thanks for @bluss for the [original IRLO thread](https://internals.rust-lang.org/t/pre-rfc-fold-ok-is-composable-internal-iteration/4434) and the rfold PR and to @cuviper for adding so many folds, [encouraging me](https://github.com/rust-lang/rust/pull/45379#issuecomment-339424670) to make this PR, and finding a catastrophic bug in a pre-review.
This is the core method in terms of which the other methods (fold, all, any, find, position, nth, ...) can be implemented, allowing Iterator implementors to get the full goodness of internal iteration by only overriding one method (per direction).
A helpful primitive for moving chunks of data around inside a slice.
In particular, adding elements to the end of a Vec then moving them
somewhere else, as a way to do efficient multiple-insert. (There's
drain for efficient block-remove, but no easy way to block-insert.)
Talk with another example: <https://youtu.be/qH6sSOr-yk8?t=560>