Add an option to run rustbuild on low priority on Windows and Unix
This is a resurrection of #40776, combining their Windows setup with an additional setup on Unix to set the program group's *nice*ness to +10 (low-but-not-lowest priority, mirroring the priority in the Windows setup) when the `low_priority` option is on.
This is a resurrection of #40776, combining their Windows setup with an
additional setup on Unix to set the program group's niceness to +10
(low-but-not-lowest priority) when the `low_priority` option is on.
rustbuild: Make save-analysis an option
This makes save-analysis an option independent from the release channel.
The CI build scripts have been modified to enable the flag.
*Merge with caution.* I haven't tested this, and this can cause nightly breakage.
This commit adds support to rustbuild for compiling Cargo as part of the release
process. Previously rustbuild would simply download a Cargo snapshot and
repackage it. With this change we should be able to turn off artifacts from the
rust-lang/cargo repository and purely rely on the artifacts Cargo produces here.
The infrastructure added here is intended to be extensible to other components,
such as the RLS. It won't exactly be a one-line addition, but the addition of
Cargo didn't require too much hooplah anyway.
The process for release Cargo will now look like:
* The rust-lang/rust repository has a Cargo submodule which is used to build a
Cargo to pair with the rust-lang/rust release
* Periodically we'll update the cargo submodule as necessary on rust-lang/rust's
master branch
* When branching beta we'll create a new branch of Cargo (as we do today), and
the first commit to the beta branch will be to update the Cargo submodule to
this exact revision.
* When branching stable, we'll ensure that the Cargo submodule is updated and
then make a stable release.
Backports to Cargo will look like:
* Send a PR to cargo's master branch
* Send a PR to cargo's release branch (e.g. rust-1.16.0)
* Send a PR to rust-lang/rust's beta branch updating the submodule
* Eventually send a PR to rust-lang/rust's master branch updating the submodule
For reference, the process to add a new component to the rust-lang/rust release
would look like:
* Add `$foo` as a submodule in `src/tools`
* Add a `tool-$foo` step which compiles `$foo` with the specified compiler,
likely mirroring what Cargo does.
* Add a `dist-$foo` step which uses `src/tools/$foo` and the `tool-$foo` output
to create a rust-installer package for `$foo` likely mirroring what Cargo
does.
* Update the `dist-extended` step with a new dependency on `dist-$foo`
* Update `src/tools/build-manifest` for the new component.
* 'master' of git://github.com/rust-lang/rust: (70 commits)
sanitizer-dylib: only run where std for x86_64-linux is available
travis: Fix build order of dist-x86-linux
fix the sanitizer-dylib test on non x86_64 linux hosts
dist-x86-linux: install newer kernel headers
enable sanitizers on build job that tests x86_64 linux
enable sanitizers on x86_64-linux releases
use helper function in the rebuild logic of the rustc_*san crates
build/test the sanitizers only when --enable-sanitizers is used
sanitizer support
Add missing urls on join_paths
Add test for #27433
Add more examples, get everything passing at last.
Remove some leftover makefiles.
Add more test for rustdoc --test
Rename manifest_version to manifest-version
reference: clarify #[cfg] section
Bump stable release date
rustbuild: Clean build/dist on `make clean`
Add missing urls for current_dir
review nits
...
This commit adds a new tool, `build-manifest`, which is used to generate a
distribution manifest of all produced artifacts. This tool is intended to
replace the `build-rust-manifest.py` script that's currently located on the
buildmaster. The intention is that we'll have a builder which periodically:
* Downloads all artifacts for a commit
* Runs `./x.py dist hash-and-sign`. This will generate `sha256` and `asc` files
as well as TOML manifests.
* Upload all generated hashes and manifests to the directory the artifacts came
from.
* Upload *all* artifacts (tarballs and hashes and manifests) to an archived
location.
* If necessary, upload all artifacts to the main location.
This script is intended to just be the second step here where orchestrating
uploads and such will all happen externally from the build system itself.
This commit adds a new flag to the configure script,
`--enable-extended`, which is intended for specifying a desire to
compile the full suite of Rust tools such as Cargo, the RLS, etc. This
is also an indication that the build system should create combined
installers such as the pkg/exe/msi artifacts.
Currently the `--enable-extended` flag just indicates that combined
installers should be built, and Cargo is itself not compiled just yet
but rather only downloaded from its location. The intention here is to
quickly get to feature parity with the current release process and then
we can start improving it afterwards.
All new files in this PR inside `src/etc/installer` are copied from the
rust-packaging repository.
rustbuild: Implement DESTDIR support
This commit primarily starts supporting the `DESTDIR` environment variable like
the old build system. Along the way this brings `config.toml` up to date with
support in `config.mk` with install options supported.
Closes#38441
In #37280 we enabled line number debugging information in release artifacts,
primarily to close out #36452 where debugging information was critical for MSVC
builds of Rust to be useful in production. This commit, however, apparently had
some unfortunate side effects.
Namely it was noticed in #37477 that if `RUST_BACKTRACE=1` was set then any
compiler error would take a very long time for the compiler to exit. The cause
of the problem here was somewhat deep:
* For all compiler errors, the compiler will `panic!` with a known value. This
tears down the main compiler thread and allows cleaning up all the various
resources. By default, however, this panic output is suppressed for "normal"
compiler errors.
* When `RUST_BACKTRACE=1` was set this caused every compiler error to generate a
backtrace.
* The libbacktrace library hits a pathological case where it spends a very long
time in its custom allocation function, `backtrace_alloc`, because the
compiler has so much debugging information. More information about this can be
found in #29293 with a summary at the end of #37477.
To solve this problem this commit simply removes debuginfo from the compiler but
not from the standard library. This should allow us to keep #36452 closed while
also closing #37477. I've measured the difference to be orders of magnitude
faster than it was before, so we should see a much quicker time-to-exit after a
compile error when `RUST_BACKTRACE=1` is set.
Closes#37477Closes#37571
This commit switches the rustbuild build system to compiling the
compiler twice for a normal bootstrap rather than the historical three
times.
Rust is a bootstrapped language which means that a previous version of
the compiler is used to build the next version of the compiler. Over
time, however, we change many parts of compiler artifacts such as the
metadata format, symbol names, etc. These changes make artifacts from
one compiler incompatible from another compiler. Consequently if a
compiler wants to be able to use some artifacts then it itself must have
compiled the artifacts.
Historically the rustc build system has achieved this by compiling the
compiler three times:
* An older compiler (stage0) is downloaded to kick off the chain.
* This compiler now compiles a new compiler (stage1)
* The stage1 compiler then compiles another compiler (stage2)
* Finally, the stage2 compiler needs libraries to link against, so it
compiles all the libraries again.
This entire process amounts in compiling the compiler three times.
Additionally, this process always guarantees that the Rust source tree
can compile itself because the stage2 compiler (created by a freshly
created compiler) would successfully compile itself again. This
property, ensuring Rust can compile itself, is quite important!
In general, though, this third compilation is not required for general
purpose development on the compiler. The third compiler (stage2) can
reuse the libraries that were created during the second compile. In
other words, the second compilation can produce both a compiler and the
libraries that compiler will use. These artifacts *must* be compatible
due to the way plugins work today anyway, and they were created by the
same source code so they *should* be compatible as well.
So given all that, this commit switches the default build process to
only compile the compiler three times, avoiding this third compilation
by copying artifacts from the previous one. Along the way a new entry in
the Travis matrix was also added to ensure that our full bootstrap can
succeed. This entry does not run tests, though, as it should not be
necessary.
To restore the old behavior of a full bootstrap (three compiles) you can
either pass:
./configure --enable-full-bootstrap
or if you're using config.toml:
[build]
full-bootstrap = true
Overall this will hopefully be an easy 33% win in build times of the
compiler. If we do 33% less work we should be 33% faster! This in turn
should affect cycle times and such on Travis and AppVeyor positively as
well as making it easier to work on the compiler itself.
A new option is introduced under the `[llvm]` section of `config.toml`,
`targets`, for overriding the list of LLVM targets to build support for.
The option is passed through to LLVM configure script. Also notes are
added about the implications of (ab)using the option; since the default
is not changed, and users of the option are expected to know what
they're doing anyway (as every porter should), the impact should be
minimal.
Fixes#38200.
This commit primarily starts supporting the `DESTDIR` environment variable like
the old build system. Along the way this brings `config.toml` up to date with
support in `config.mk` with install options supported.
Closes#38441
Add prefix to config.toml
This allows `rustbuild` to be used to install to a prefix.
```toml
[build]
prefix = "/path/to/install"
```
For example, the following `config.toml` will cause `x.py dist --install` to install to `/path/to/install`
This commit adds support for sccache, a ccache-like compiler which works on MSVC
and stores results into an S3 bucket. This also switches over all Travis and
AppVeyor automation to using sccache to ensure a shared and unified cache over
time which can be shared across builders.
The support for sccache manifests as a new `--enable-sccache` option which
instructs us to configure LLVM differently to use a 'sccache' binary instead of
a 'ccache' binary. All docker images for Travis builds are updated to download
Mozilla's tooltool builds of sccache onto various containers and systems.
Additionally a new `rust-lang-ci-sccache` bucket is configured to hold all of
our ccache goodies.
A few changes are included here:
* The `winapi` and `url` dependencies were dropped. The source code for these
projects is pretty weighty, and we're about to vendor them, so let's not
commit to that intake just yet. If necessary we can vendor them later but for
now it shouldn't be necessary.
* The `--frozen` flag is now always passed to Cargo, obviating the need for
tidy's `cargo_lock` check.
* Tidy was updated to not check the vendor directory
Closes#34687
This commit enables by default passing the `-C debuginfo=1` argument to the
compiler for the stable, beta, and nightly release channels. A new configure
option was also added, `--enable-debuginfo-lines`, to enable this behavior in
developer builds as well.
Closes#36452
We hope to move to AppVeyor in the near future off of Buildbot + EC2. This adds
an `appveyor.yml` configuration file which is ready to run builds on the auto
branch. This is also accompanied with a few minor fixes to the build system and
such to accomodate AppVeyor.
The intention is that we're not switching over to AppVeyor entirely just yet,
but rather we'll watch the builds for a week or so. If everything checks out
then we'll start gating on AppVeyor instead of Buildbot!
rustbuild: per target musl-root
config.toml now accepts a target.$TARGET.musl-root key that lets you
override the "build" musl-root value, which is set via the --musl-root
flag or via the build.musl-root key.
With this change, it's now possible to compile std for several musl
targets at once. Here's are the sample commands to do such thing:
```
$ configure \
--enable-rustbuild \
--target=x86_64-unknown-linux-musl,arm-unknown-linux-musleabi \
--musl-root=/musl/x86_64-unknown-linux-musl/
$ edit config.toml && tail config.toml
[target.arm-unknown-linux-musleabi]
musl-root = "/x-tools/arm-unknown-linux-musleabi/arm-unknown-linux-musleabi/sysroot/usr"
$ make
```
r? @alexcrichton
With this we should be able to start producing releases of std for arm musl targets
rustbuild: add config.toml option to disable codegen tests
Fixes#36232.
I think it worked? Here's a build log where I tried to bootstrap, it crashed, then I added the setting to config.toml and it continued: https://gist.github.com/durka/cbf97cf04b8e065f1a2cfda4c1b6bf95
r? @alexcrichton
but keep them enabled by default to maintain the status quo.
When disabled shaves ~56KB off every x86_64-unknown-linux-gnu
binary.
To disable backtraces you have to use a config.toml (see
src/bootstrap/config.toml.example for details) when building rustc/std:
$ python bootstrap.py --config=config.toml
Currently rustbuild isn't detecting the `-O` flag for tests via the
`--disable-optimize-tests` or not command line flag to `./configure`, and this
commit patches up the support to pass `-O` by default.
This commit expands the bootstrap build system's `README.md` as well as ensuring
that all API documentation is present and up-to-date. Additionally a new
`config.toml.example` file is checked in with commented out versions of all
possible configuration values.