* Use `make check-lexer` to verify the grammar.
* Extend grammar/README
* Add make clean-grammar rule
* Add target `check-build-lexer-verifier` to `make tidy`, so it will build the verifier with every build and catch future errors
* Search for antlr4 with configure and find
libcompiler-rt.a is dead, long live libcompiler-builtins.rlib
This commit moves the logic that used to build libcompiler-rt.a into a
compiler-builtins crate on top of the core crate and below the std crate.
This new crate still compiles the compiler-rt instrinsics using gcc-rs
but produces an .rlib instead of a static library.
Also, with this commit rustc no longer passes -lcompiler-rt to the
linker. This effectively makes the "no-compiler-rt" field of target
specifications a no-op. Users of `no_std` will have to explicitly add
the compiler-builtins crate to their crate dependency graph *if* they
need the compiler-rt intrinsics. Users of the `std` have to do nothing
extra as the std crate depends on compiler-builtins.
Finally, this a step towards lazy compilation of std with Cargo as the
compiler-rt intrinsics can now be built by Cargo instead of having to
be supplied by the user by some other method.
closes#34400
Previously the file was not regenrated upon modification of src/rustllvm or others.
Now it will be rebuilt if `src/llvm` or `src/rustllvm` is touched.
Also added *.rs rule to 'clean' rule so that it is removed upon 'make
clean'.
This commit removes all morestack support from the compiler which entails:
* Segmented stacks are no longer emitted in codegen.
* We no longer build or distribute libmorestack.a
* The `stack_exhausted` lang item is no longer required
The only current use of the segmented stack support in LLVM is to detect stack
overflow. This is no longer really required, however, because we already have
guard pages for all threads and registered signal handlers watching for a
segfault on those pages (to print out a stack overflow message). Additionally,
major platforms (aka Windows) already don't use morestack.
This means that Rust is by default less likely to catch stack overflows because
if a function takes up more than one page of stack space it won't hit the guard
page. This is what the purpose of morestack was (to catch this case), but it's
better served with stack probes which have more cross platform support and no
runtime support necessary. Until LLVM supports this for all platform it looks
like morestack isn't really buying us much.
cc #16012 (still need stack probes)
Closes#26458 (a drive-by fix to help diagnostics on stack overflow)
This commit modifies the makefiles to enable building LLVM with cmake and Visual
Studio to generate an LLVM that targets MSVC. Rust's configure script requires
cmake to be installed when targeting MSVC and will configure LLVM with cmake
instead of the normal `./configure` script LLVM provides. The build will then
run cmake to execute the build instead of the normal `make`.
Currently `make clean-llvm` isn't supported on MSVC as I can't figure out how to
run a "clean" target for the Visual Studio files.
After `make clean' I'm seeing the build break with
```
cp: cannot stat ‘x86_64-unknown-linux-gnu/rt/libbacktrace/.libs/libbacktrace.a’: No such file or directory
```
Deleteing the libbacktrace dir entirely on clean fixes.
This converts it to be very similar to crates.mk, with a single list of
the documentation items creating all the necessary bits and pieces.
Changes include:
- rustdoc is used to render HTML & test standalone docs
- documentation building now obeys NO_REBUILD=1
- testing standalone docs now obeys NO_REBUILD=1
- L10N is slightly less broken (in particular, it shares dependencies
and code with the rest of the code)
- PDFs can be built for all documentation items, not just tutorial and
manual
- removes the obsolete & unused extract-tests.py script
- adjust the CSS for standalone docs to use the rustdoc syntax
highlighting
This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.
This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.
The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.
In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.
Closes#10207
Before this patch, if you wanted to add a crate to the build system you had to
change about 100 lines across 8 separate makefiles. This is highly error prone
and opaque to all but a few. This refactoring is targeted at consolidating this
effort so adding a new crate adds one line in one file in a way that everyone
can understand it.
In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
Explicitly have the only C++ portion of the runtime be one file with exception
handling. All other runtime files must now live in C and be fully defined in C.
Pandoc can create epub verions of the markdown files. Since the docs
are lengthy, epubs are handy to have around. Two rules to create epub
versions of the reference manual and the main tutorial are added here.
Signed-off-by: Noufal Ibrahim <noufal@nibrahim.net.in>
There are a few reasons that this is a desirable move to take:
1. Proof of concept that a third party event loop is possible
2. Clear separation of responsibility between rt::io and the uv-backend
3. Enforce in the future that the event loop is "pluggable" and replacable
Here's a quick summary of the points of this pull request which make this
possible:
* Two new lang items were introduced: event_loop, and event_loop_factory.
The idea of a "factory" is to define a function which can be called with no
arguments and will return the new event loop as a trait object. This factory
is emitted to the crate map when building an executable. The factory doesn't
have to exist, and when it doesn't then an empty slot is in the crate map and
a basic event loop with no I/O support is provided to the runtime.
* When building an executable, then the rustuv crate will be linked by default
(providing a default implementation of the event loop) via a similar method to
injecting a dependency on libstd. This is currently the only location where
the rustuv crate is ever linked.
* There is a new #[no_uv] attribute (implied by #[no_std]) which denies
implicitly linking to rustuv by default
Closes#5019
Sadly, there's a lack of resources for maintaining the `rust` tool,
and we decided in the 2013-10-08 Rust team meeting that it's better
to remove it altogether than to leave it in a broken state.
This deletion is without prejudice. If a person or people appear who
would like to maintain the tool, we will probably be happy to
resurrect it!
Closes#9775
This purges doc/{std,extra} entirely during a `make clean` instead of just the
html files in some top level directories. This should help old documentation
from showing up on static.rust-lang.org
Removes old rustdoc, moves rustdoc_ng into its place instead (plus drops the _ng
suffix). Also shreds all reference to rustdoc_ng from the Makefile rules.
Now rustdoc_ng will be built as both a binary and a library (using the same
rules as all the other binaries that rust has). Furthermore, this will also
start building rustdoc_ng unit tests (and running them).
The new glob tests created tmp/glob-tests as a directory, but the never removed
it. The `make clean` target then attempted to `rm -f` on this, but it couldn't
remove the directory. This both changes the clean target to `rm -rf` tmp files,
and also alters the tests to delete the directory that all the files are added
into.