Make the ./x.py script fail when run with an invalid command, like:
./x.py nonsense
This helps in case of chaining multiple runs, eg.:
./x.py biuld && ./x.py test
This introduces a slight change in behavior, where we unilaterally
respect the --host and --target parameters passed for all sanity
checking and runtime configuration.
This option forwards to each `cargo test` invocation, and applies the
same logic across all test steps to keep going after failures. At the
end, a brief summary line reports how many commands failed, if any.
Note that if a test program fails to even start at all, or if an
auxiliary build command related to testing fails, these are still left
to stop everything right away.
Fixes#40219.
only create source tarball for the Dist subcommand
mark install rule as default for Kind::Install
split install-docs
split install-std
factor out empty_dir handling
split install-cargo
split install-analysis
split install-src
rework install-rustc
properly handle cross-compilation setups for install
use pkgname in install
split plain source tarball generation from rust-src dist
document src-tarball in config.toml.exmaple
Signed-off-by: Marc-Antoine Perennou <Marc-Antoine@Perennou.com>
- No more manual args manipulation -- getopts used for everything.
As a result, options can be in any position, now, even before the
subcommand.
- The additional options for test, bench, and dist now appear in the
help output.
- No more single-letter variable bindings used internally for large
scopes.
- Don't output the time measurement when just invoking 'x.py'
- Logic is now much more linear. We build strings up, and then print
them.
- Don't print 'unknown subcommand' at the top of the help message. The help message now clearly instructs the user to provide a subcommand.
- Clarify the usage line. Subcommand is required. Don't echo invalid input back out in the usage line (what the...???). args renamed to paths, because that's what all the args are referred to elsewhere.
- List the available subcommands immediately following the usage line. It's the one required argument, after all.
- Slightly improve the extra documentation for the build, test, and doc commands.
- Don't print 'Available invocations:' at all. It occurred immediately before 'Available paths:'.
- Clearly state that running with '-h -v' will produce a list of available paths.
This is a simple way to workaround the debugging issues caused by the rustc
wrapper used in the bootstrap process. Namely, it uses some obscure environment
variables and you can’t just copy the failed command and run it in the shell or
debugger to examine the failure more closely.
With `--on-fail` its possible to run an arbitrary command within exactly the
same environment under which rustc failed. Theres’s multiple ways to use this
new flag:
$ python x.py build --stage=1 --on-fail=env
would print a list of environment variables and the failed command, so a
few copy-pastes and you now can run the same rust in your shell outside the
bootstrap system.
$ python x.py build --stage=1 --on-fail=bash
Is a more useful variation of the command above in that it launches a whole
shell with environment already in place! All that’s left to do is copy-paste
the command just above the shell prompt!
Fixes#38686Fixes#38221
This expands the `cross` travis matrix entry with a few more targets that our
nightlies are building:
* x86_64-rumprun-netbsd
* arm-unknown-linux-musleabi
* arm-unknown-linux-musleabihf
* armv7-unknown-linux-musleabihf
* mips-unknown-linux-musl
* mipsel-unknown-linux-musl
This commit doesn't compile custom toolchains like our current cross-image does,
but instead compiles musl manually and then compiles libunwind manually (like
x86_64) for use for the ARM targets and just uses openwrt toolchains for the
mips targets.
This commit starts adding the infrastructure for uploading release artifacts
from AppVeyor/Travis on each commit. The idea is that eventually we'll upload a
full release to AppVeyor/Travis in accordance with plans [outlined earlier].
Right now this configures Travis/Appveyor to upload all tarballs in the `dist`
directory, and various images are updated to actually produce tarballs in these
directories. These are nowhere near ready to be actual release artifacts, but
this should allow us to play around with it and test it out. Once this commit
lands we should start seeing artifacts uploaded on each commit.
[outlined earlier]: https://internals.rust-lang.org/t/rust-ci-release-infrastructure-changes/4489
rustbuild: Add cli option --keep-stage
This option is intended to be used like:
./x.py build --stage 1 --keep-stage 0
Which skips all stage 0 steps, so that stage 1 can be recompiled
directly (even if for example libcore has changes).
This is useful when working on `cfg(not(stage0))` parts of the
libraries or when re-running stage 1 tests in libraries in general.
Fixes#38326
This option is intended to be used like:
./x.py build --stage 1 --keep-stage 0
Which skips all stage 0 steps, so that stage 1 can be recompiled
directly (even if for example libcore has changes).
This is useful when working on `cfg(not(stage0))` parts of the
libraries, or when re-running stage 1 tests in libraries in general.
This commit switches the default build system for Rust from the makefiles to
rustbuild. The rustbuild build system has been in development for almost a year
now and has become quite mature over time. This commit is an implementation of
the proposal on [internals] which slates deletion of the makefiles on
2016-01-02.
[internals]: https://internals.rust-lang.org/t/proposal-for-promoting-rustbuild-to-official-status/4368
This commit also updates various documentation in `README.md`,
`CONTRIBUTING.md`, `src/bootstrap/README.md`, and throughout the source code of
rustbuild itself.
Closes#37858
This commit is a rewrite of the user-facing interface to the rustbuild build
system. The intention here is to make it much easier to compile/test the project
without having to remember weird rule names and such. An overall view of the new
interface is:
# build everything
./x.py build
# document everyting
./x.py doc
# test everything
./x.py test
# test libstd
./x.py test src/libstd
# build libcore stage0
./x.py build src/libcore --stage 0
# run stage1 run-pass tests
./x.py test src/test/run-pass --stage 1
The `src/bootstrap/bootstrap.py` script is now aliased as a top-level `x.py`
script. This `x` was chosen to be both short and easily tab-completable (no
collisions in that namespace!). The build system now accepts a "subcommand" of
what to do next, the main ones being build/doc/test.
Each subcommand then receives an optional list of arguments. These arguments are
paths in the source repo of what to work with. That is, if you want to test a
directory, you just pass that directory as an argument.
The purpose of this rewrite is to do away with all of the arcane renames like
"rpass" is the "run-pass" suite, "cfail" is the "compile-fail" suite, etc. By
simply working with directories and files it's much more intuitive of how to run
a test (just pass it as an argument).
The rustbuild step/dependency management was also rewritten along the way to
make this easy to work with and define, but that's largely just a refactoring of
what was there before.
The *intention* is that this support is extended for arbitrary files (e.g.
`src/test/run-pass/my-test-case.rs`), but that isn't quite implemented just yet.
Instead directories work for now but we can follow up with stricter path
filtering logic to plumb through all the arguments.
The organization in rustbuild was a little odd at the moment where the `lib.rs`
was quite small but the binary `main.rs` was much larger. Unfortunately as well
there was a `build/` directory with the implementation of the build system, but
this directory was ignored by GitHub on the file-search prompt which was a
little annoying.
This commit reorganizes rustbuild slightly where all the library files (the
build system) is located directly inside of `src/bootstrap` and all the binaries
now live in `src/bootstrap/bin` (they're small). Hopefully this should allow
GitHub to index and allow navigating all the files while maintaining a
relatively similar layout to the other libraries in `src/`.