Commit Graph

4 Commits

Author SHA1 Message Date
Josh Stone
13724fafdc Add more custom folding to core::iter adaptors
Many of the iterator adaptors will perform faster folds if they forward
to their inner iterator's folds, especially for inner types like `Chain`
which are optimized too.  The following types are newly specialized:

| Type        | `fold` | `rfold` |
| ----------- | ------ | ------- |
| `Enumerate` | ✓      | ✓       |
| `Filter`    | ✓      | ✓       |
| `FilterMap` | ✓      | ✓       |
| `FlatMap`   | exists | ✓       |
| `Fuse`      | ✓      | ✓       |
| `Inspect`   | ✓      | ✓       |
| `Peekable`  | ✓      | N/A¹    |
| `Skip`      | ✓      | N/A²    |
| `SkipWhile` | ✓      | N/A¹    |

¹ not a `DoubleEndedIterator`

² `Skip::next_back` doesn't pull skipped items at all, but this couldn't
be avoided if `Skip::rfold` were to call its inner iterator's `rfold`.

Benchmarks
----------

In the following results, plain `_sum` computes the sum of a million
integers -- note that `sum()` is implemented with `fold()`.  The
`_ref_sum` variants do the same on a `by_ref()` iterator, which is
limited to calling `next()` one by one, without specialized `fold`.

The `chain` variants perform the same tests on two iterators chained
together, to show a greater benefit of forwarding `fold` internally.

    test iter::bench_enumerate_chain_ref_sum  ... bench:   2,216,264 ns/iter (+/- 29,228)
    test iter::bench_enumerate_chain_sum      ... bench:     922,380 ns/iter (+/- 2,676)
    test iter::bench_enumerate_ref_sum        ... bench:     476,094 ns/iter (+/- 7,110)
    test iter::bench_enumerate_sum            ... bench:     476,438 ns/iter (+/- 3,334)

    test iter::bench_filter_chain_ref_sum     ... bench:   2,266,095 ns/iter (+/- 6,051)
    test iter::bench_filter_chain_sum         ... bench:     745,594 ns/iter (+/- 2,013)
    test iter::bench_filter_ref_sum           ... bench:     889,696 ns/iter (+/- 1,188)
    test iter::bench_filter_sum               ... bench:     667,325 ns/iter (+/- 1,894)

    test iter::bench_filter_map_chain_ref_sum ... bench:   2,259,195 ns/iter (+/- 353,440)
    test iter::bench_filter_map_chain_sum     ... bench:   1,223,280 ns/iter (+/- 1,972)
    test iter::bench_filter_map_ref_sum       ... bench:     611,607 ns/iter (+/- 2,507)
    test iter::bench_filter_map_sum           ... bench:     611,610 ns/iter (+/- 472)

    test iter::bench_fuse_chain_ref_sum       ... bench:   2,246,106 ns/iter (+/- 22,395)
    test iter::bench_fuse_chain_sum           ... bench:     634,887 ns/iter (+/- 1,341)
    test iter::bench_fuse_ref_sum             ... bench:     444,816 ns/iter (+/- 1,748)
    test iter::bench_fuse_sum                 ... bench:     316,954 ns/iter (+/- 2,616)

    test iter::bench_inspect_chain_ref_sum    ... bench:   2,245,431 ns/iter (+/- 21,371)
    test iter::bench_inspect_chain_sum        ... bench:     631,645 ns/iter (+/- 4,928)
    test iter::bench_inspect_ref_sum          ... bench:     317,437 ns/iter (+/- 702)
    test iter::bench_inspect_sum              ... bench:     315,942 ns/iter (+/- 4,320)

    test iter::bench_peekable_chain_ref_sum   ... bench:   2,243,585 ns/iter (+/- 12,186)
    test iter::bench_peekable_chain_sum       ... bench:     634,848 ns/iter (+/- 1,712)
    test iter::bench_peekable_ref_sum         ... bench:     444,808 ns/iter (+/- 480)
    test iter::bench_peekable_sum             ... bench:     317,133 ns/iter (+/- 3,309)

    test iter::bench_skip_chain_ref_sum       ... bench:   1,778,734 ns/iter (+/- 2,198)
    test iter::bench_skip_chain_sum           ... bench:     761,850 ns/iter (+/- 1,645)
    test iter::bench_skip_ref_sum             ... bench:     478,207 ns/iter (+/- 119,252)
    test iter::bench_skip_sum                 ... bench:     315,614 ns/iter (+/- 3,054)

    test iter::bench_skip_while_chain_ref_sum ... bench:   2,486,370 ns/iter (+/- 4,845)
    test iter::bench_skip_while_chain_sum     ... bench:     633,915 ns/iter (+/- 5,892)
    test iter::bench_skip_while_ref_sum       ... bench:     666,926 ns/iter (+/- 804)
    test iter::bench_skip_while_sum           ... bench:     444,405 ns/iter (+/- 571)
2017-09-25 20:53:08 -07:00
Josh Stone
61a7703e55 Customize <FlatMap as Iterator>::fold
`FlatMap` can use internal iteration for its `fold`, which shows a
performance advantage in the new benchmarks:

    test iter::bench_flat_map_chain_ref_sum ... bench:   4,354,111 ns/iter (+/- 108,871)
    test iter::bench_flat_map_chain_sum     ... bench:     468,167 ns/iter (+/- 2,274)
    test iter::bench_flat_map_ref_sum       ... bench:     449,616 ns/iter (+/- 6,257)
    test iter::bench_flat_map_sum           ... bench:     348,010 ns/iter (+/- 1,227)

... where the "ref" benches are using `by_ref()` that isn't optimized.
So this change shows a decent advantage on its own, but much more when
combined with a `chain` iterator that also optimizes `fold`.
2017-09-14 13:51:32 -07:00
Josh Stone
4a8ddac99e Use fold to implement Iterator::for_each
The benefit of using internal iteration is shown in new benchmarks:

    test iter::bench_for_each_chain_fold     ... bench:     635,110 ns/iter (+/- 5,135)
    test iter::bench_for_each_chain_loop     ... bench:   2,249,983 ns/iter (+/- 42,001)
    test iter::bench_for_each_chain_ref_fold ... bench:   2,248,061 ns/iter (+/- 51,940)
2017-06-21 13:22:27 -07:00
Son
7c8c45e762 Extract collections benchmarks to libcollections/benches
And libcore/benches
2017-02-06 21:38:47 +11:00