Rename `optin_builtin_traits` to `auto_traits`
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
r? `@oli-obk` (feel free to re-assign if you're not the right reviewer for this)
Proposal to add Peekable::peek_mut
A "peekable" iterator has a `peek()`-method which provides an immutable reference to the next item. We currently do not have a method to modify that item, which we could easily add via a `peek_mut()`. See the test for a use-case (alike to my original use case), where a "pristine" iterator is passed on after modifying its state via `peek_mut()`.
If there is interest in this, I can expand on the tests and docs.
Document unsafety in core::slice::memchr
Contributes to #66219
Note sure if that's good enough, especially for the `align_to` call.
The docs only mention transmuting and I don't think that everything related to reference lifetimes and state validity mentioned in the [nomicon](https://doc.rust-lang.org/nomicon/transmutes.html) are relevant here.
They were originally called "opt-in, built-in traits" (OIBITs), but
people realized that the name was too confusing and a mouthful, and so
they were renamed to just "auto traits". The feature flag's name wasn't
updated, though, so that's what this PR does.
There are some other spots in the compiler that still refer to OIBITs,
but I don't think changing those now is worth it since they are internal
and not particularly relevant to this PR.
Also see <https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/opt-in.2C.20built-in.20traits.20(auto.20traits).20feature.20name>.
Qualify `panic!` as `core::panic!` in non-built-in `core` macros
Fixes#78333.
-----
Otherwise code like this
#![no_implicit_prelude]
fn main() {
::std::todo!();
::std::unimplemented!();
}
will fail to compile, which is unfortunate and presumably unintended.
This changes many invocations of `panic!` in a `macro_rules!` definition
to invocations of `$crate::panic!`, which makes the invocations hygienic.
Note that this does not make the built-in macro `assert!` hygienic.
Otherwise code like this
#![no_implicit_prelude]
fn main() {
::std::todo!();
::std::unimplemented!();
}
will fail to compile, which is unfortunate and presumably unintended.
This changes many invocations of `panic!` in a `macro_rules!` definition
to invocations of `$crate::panic!`, which makes the invocations hygienic.
Note that this does not make the built-in macro `assert!` hygienic.
Impl Default for PhantomPinned
`PhantomPinned` is just a marker type, with an obvious default value (the only value). So I can't think of a reason not to do this. Sure, it's used in exotic situations with unsafe code. But the people writing that code can decide for themselves if they can derive `Default`, and in many situations the derived impl will make sense:
```rust
#[derive(Default)]
struct NeedsPin {
marker: PhantomPinned,
buf: [u8; 1024],
ptr_to_data: Option<*const u8>,
}
```
Also stabilize constctlz for const ctlz_nonzero.
The public methods stabilized const by this commit are:
* `{i*,u*}::checked_pow`
* `{i*,u*}::saturating_pow`
* `{i*,u*}::wrapping_pow`
* `{i*,u*}::overflowing_pow`
* `{i*,u*}::pow`
* `u*::next_power_of_two`
* `u*::checked_next_power_of_two`
* `u*::wrapping_next_power_of_two` (the method itself is still unstable)
Stabilize refcell_take
Tracking Issue: #71395
``@KodrAus`` nominated this for FCP, so here's a PR!
I've never made a stabilization PR, so please mention if there's anything I can improve, thanks.
Stabilize alloc::Layout const functions
Stabilizes #67521. In particular the following stable methods are stabilized as `const fn`:
* `size`
* `align`
* `from_size_align`
Stabilizing `size` and `align` should not be controversial as they are simple (usize and NonZeroUsize) fields and I don't think there's any reason to make them not const compatible in the future. That being true, the other methods are trivially `const`. The only other issue being returning a `Result` from a `const fn` but this has been made more usable by recent stabilizations.
Split each iterator adapter and source into individual modules
This PR creates individual modules for each iterator adapter and iterator source.
This is done to enhance the readability of corresponding modules (`adapters/mod.rs` and `sources.rs`) which were hard to navigate and read because of lots of repeated lines (e.g.: `adapters/mod.rs` was 3k lines long). This is also in line with some adapters which already had their own modules (`Flatten`, `FlatMap`, `Chain`, `Zip`, `Fuse`).
This PR also makes `Take`s adapter fields private (I have no idea why they were `pub(super)` before).
r? ``@LukasKalbertodt``
Add f{32,64}::is_subnormal
The docs recommend that you use dedicated methods instead of calling `classify` directly, although there isn't actually a way of checking if a number is subnormal without calling classify. There are dedicated methods for all other forms, excluding `is_zero` (which is just `== 0.0` anyway).
Stabilize clamp
Tracking issue: https://github.com/rust-lang/rust/issues/44095
Clamp has been merged and unstable for about a year and a half now. How do we feel about stabilizing this?
More consistently use spaces after commas in lists in docs
This PR changes instances of lists that didn't use spaces after commas, like `vec![1,2,3]`, to `vec![1, 2, 3]` to be more consistent with idiomatic Rust style (the way these were looks strange to me, especially because there are often lists that *do* use spaces after the commas later in the same code block 😬).
I noticed one of these in an example in the stdlib docs and went looking for more, but as far as I can see, I'm only changing those spots in user-facing documentation or rustc output, and the changes make no semantic difference.
clarify rules for ZST Boxes
LLVM's rules around `getelementptr inbounds` with offset 0 are a bit annoying, and as a consequence we have no choice but say that a `Box<()>` pointing to previously allocated memory that has since been freed is UB. Clarify the docs to reflect this.
This is based on conversations on the LLVM mailing list.
* Here's my initial mail: https://lists.llvm.org/pipermail/llvm-dev/2019-February/130452.html
* The first email of the March part of that thread: https://lists.llvm.org/pipermail/llvm-dev/2019-March/130831.html
* First email of the April part: https://lists.llvm.org/pipermail/llvm-dev/2019-April/131693.html
The conclusion for me at least was that `getelementptr inbounds` with offset 0 is *not* the identity function, but can sometimes return `poison` even when the input is a regular pointer -- specifically, it returns `poison` when this pointer points into something that LLVM "knows has been deallocated", i.e., a former LLVM-managed allocation. It is however the identity function on pointers obtained by casting integers.
Note that there [are formal proposals](https://people.mpi-sws.org/~jung/twinsem/twinsem.pdf) for LLVM semantics where `getelementptr inbounds` with offset 0 isn't quite the identity function but never returns `poison` (it affects the provenance of the pointer but in a way that doesn't matter if this pointer is never used for memory accesses), and indeed this is likely necessary to consistently describe LLVM semantics. But with the informal LLVM LangRef that we have right now, and with LLVM devs insisting otherwise, it seems unwise to rely on this.
Add lint for panic!("{}")
This adds a lint that warns about `panic!("{}")`.
`panic!(msg)` invocations with a single argument use their argument as panic payload literally, without using it as a format string. The same holds for `assert!(expr, msg)`.
This lints checks if `msg` is a string literal (after expansion), and warns in case it contained braces. It suggests to insert `"{}", ` to use the message literally, or to add arguments to use it as a format string.
![image](https://user-images.githubusercontent.com/783247/96643867-79eb1080-1328-11eb-8d4e-a5586837c70a.png)
This lint is also a good starting point for adding warnings about `panic!(not_a_string)` later, once [`panic_any()`](https://github.com/rust-lang/rust/pull/74622) becomes a stable alternative.
Make as{_mut,}_slice on array::IntoIter public
The functions are useful in cases where you want to move data out of the IntoIter in bulk, by transmute_copy'ing the slice and then forgetting the IntoIter.
In the compiler, this is useful for providing a sped up IntoIter implementation. One can alternatively provide a separate allocate_array function but one can avoid duplicating some logic by passing everything through the generic iterator using interface.
As per suggestion in https://github.com/rust-lang/rust/pull/78569/files#r526506964
Clarify availability of atomic operations
This was noticed while we were updating the embedded rust book: https://github.com/rust-embedded/book/pull/273/files
These targets do natively have atomic load/stores, but do not support CAS operations.