Auto-generate lint documentation.
This adds a tool which will generate the lint documentation in the rustc book automatically. This is motivated by keeping the documentation up-to-date, and consistently formatted. It also ensures the examples are correct and that they actually generate the expected lint. The lint groups table is also auto-generated. See https://github.com/rust-lang/compiler-team/issues/349 for the original proposal.
An outline of how this works:
- The `declare_lint!` macro now accepts a doc comment where the documentation is written. This is inspired by how clippy works.
- A new tool `src/tools/lint-docs` scrapes the documentation and adds it to the rustc book during the build.
- It runs each example and verifies its output and embeds the output in the book.
- It does a few formatting checks.
- It verifies that every lint is documented.
- Groups are collected from `rustc -W help`.
I updated the documentation for all the missing lints. I have also added an "Explanation" section to each lint providing a reason for the lint and suggestions on how to resolve it.
This can lead towards a future enhancement of possibly showing these docs via the `--explain` flag to make them easily accessible and discoverable.
Tracing update
This does not bring the more significant changes that are coming down the pipeline, but since I've already prepared the PR leaving it up :)
See https://github.com/rust-lang/rust/pull/76210#issuecomment-685065938:
> Unfortunately, tracing 0.1.20 — which contained the change to reduce the amount of code generated by the tracing macros — had to be yanked, as it broke previously-compiling code for some downstream crates. I've not yet had the chance to fix this and release a new patch. So, in order to benefit from the changes to reduce generated code, you'll need to wait until there's a new version of tracing as well as tracing-attributes and tracing-core.
Add derive macro for specifying diagnostics using attributes.
Introduces `#[derive(SessionDiagnostic)]`, a derive macro for specifying structs that can be converted to Diagnostics using directions given by attributes on the struct and its fields. Currently, the following attributes have been implemented:
- `#[code = "..."]` -- this sets the Diagnostic's error code, and must be provided on the struct iself (ie, not on a field). Equivalent to calling `code`.
- `#[message = "..."]` -- this sets the Diagnostic's primary error message.
- `#[label = "..."]` -- this must be applied to fields of type `Span`, and is equivalent to `span_label`
- `#[suggestion(..)]` -- this allows a suggestion message to be supplied. This attribute must be applied to a field of type `Span` or `(Span, Applicability)`, and is equivalent to calling `span_suggestion`. Valid arguments are:
- `message = "..."` -- this sets the suggestion message.
- (Optional) `code = "..."` -- this suggests code for the suggestion. Defaults to empty.
`suggestion`also comes with other variants: `#[suggestion_short(..)]`, `#[suggestion_hidden(..)]` and `#[suggestion_verbose(..)]` which all take the same keys.
Within the strings passed to each attribute, fields can be referenced without needing to be passed explicitly into the format string -- eg, `#[error = "{ident} already declared"] ` will set the error message to `format!("{} already declared", &self.ident)`. Any fields on the struct can be referenced in this way.
Additionally, for any of these attributes, Option fields can be used to only optionally apply the decoration -- for example:
```rust
#[derive(SessionDiagnostic)]
#[code = "E0123"]
struct SomeKindOfError {
...
#[suggestion(message = "informative error message")]
opt_sugg: Option<(Span, Applicability)>
...
}
```
will not emit a suggestion if `opt_sugg` is `None`.
We plan on iterating on this macro further; this PR is a start.
Closes#61132.
r? `@oli-obk`
Support dataflow problems on arbitrary lattices
This PR implements last of the proposed extensions I mentioned in the design meeting for the original dataflow refactor. It extends the current dataflow framework to work with arbitrary lattices, not just `BitSet`s. This is a prerequisite for dataflow-enabled MIR const-propagation. Personally, I am skeptical of the usefulness of doing const-propagation pre-monomorphization, since many useful constants only become known after monomorphization (e.g. `size_of::<T>()`) and users have a natural tendency to hand-optimize the rest. It's probably worth exprimenting with, however, and others have shown interest cc `@rust-lang/wg-mir-opt.`
The `Idx` associated type is moved from `AnalysisDomain` to `GenKillAnalysis` and replaced with an associated `Domain` type that must implement `JoinSemiLattice`. Like before, each `Analysis` defines the "bottom value" for its domain, but can no longer override the dataflow join operator. Analyses that want to use set intersection must now use the `lattice::Dual` newtype. `GenKillAnalysis` impls have an additional requirement that `Self::Domain: BorrowMut<BitSet<Self::Idx>>`, which effectively means that they must use `BitSet<Self::Idx>` or `lattice::Dual<BitSet<Self::Idx>>` as their domain.
Most of these changes were mechanical. However, because a `Domain` is no longer always a powerset of some index type, we can no longer use an `IndexVec<BasicBlock, GenKillSet<A::Idx>>>` to store cached block transfer functions. Instead, we use a boxed `dyn Fn` trait object. I discuss a few alternatives to the current approach in a commit message.
The majority of new lines of code are to preserve existing Graphviz diagrams for those unlucky enough to have to debug dataflow analyses. I find these diagrams incredibly useful when things are going wrong and considered regressing them unacceptable, especially the pretty-printing of `MovePathIndex`s, which are used in many dataflow analyses. This required a parallel `fmt` trait used only for printing dataflow domains, as well as a refactoring of the `graphviz` module now that we cannot expect the domain to be a `BitSet`. Some features did have to be removed, such as the gen/kill display mode (which I didn't use but existed to mirror the output of the old dataflow framework) and line wrapping. Since I had to rewrite much of it anyway, I took the opportunity to switch to a `Visitor` for printing dataflow state diffs instead of using cursors, which are error prone for code that must be generic over both forward and backward analyses. As a side-effect of this change, we no longer have quadratic behavior when writing graphviz diagrams for backward dataflow analyses.
r? `@pnkfelix`
Update expect-test to 1.0
The only change is that `expect_file` now uses path relative to the
current file (same as `include!`). Before, it used paths relative to
the workspace root, which makes no sense.
The only change is that `expect_file` now uses path relative to the
current file (same as `include!`). Before, it used paths relative to
the workspace root, which makes no sense.
Rollup of 14 pull requests
Successful merges:
- #75832 (Move to intra-doc links for wasi/ext/fs.rs, os_str_bytes.rs…)
- #75852 (Switch to intra-doc links in `core::hash`)
- #75874 (Shorten liballoc doc intra link while readable)
- #75881 (Expand rustdoc theme chooser x padding)
- #75885 (Fix another clashing_extern_declarations false positive.)
- #75892 (Fix typo in TLS Model in Unstable Book)
- #75910 (Add test for issue #27130)
- #75917 (Move to intra doc links for core::ptr::non_null)
- #75975 (Allow --bess ing expect-tests in tools)
- #75990 (Add __fastfail for Windows on arm/aarch64)
- #76015 (Fix loading pretty-printers in rust-lldb script)
- #76022 (Clean up rustdoc front-end source code)
- #76029 (Move to intra-doc links for library/core/src/sync/atomic.rs)
- #76057 (Move retokenize hack to save_analysis)
Failed merges:
r? @ghost
Update compiler-builtins
Update the compiler-builtins dependency to include latest changes.
This allows for `aarch64-unknown-linux-musl` to pass all tests.
Fixes#57820 and fixes#46651
It's a unit-test in a sense that it only checks syntax highlighting.
However, the resulting HTML is written to disk and can be easily
inspected in the browser.
To update the test, run with `--bless` argument or set
`UPDATE_EXPEC=1` env var
Introduce expect snapshot testing library into rustc
Snapshot testing is a technique for writing maintainable unit tests.
Unlike usual `assert_eq!` tests, snapshot tests allow
to *automatically* upgrade expected values on test failure.
In a sense, snapshot tests are inline-version of our beloved
UI-tests.
Example:
![expect](https://user-images.githubusercontent.com/1711539/90888810-3bcc8180-e3b7-11ea-9626-d06e89e1a0bb.gif)
A particular library we use, `expect_test` provides an `expect!`
macro, which creates a sort of self-updating string literal (by using
`file!` macro). Self-update is triggered by setting `UPDATE_EXPECT`
environmental variable (this info is printed during the test failure).
This library was extracted from rust-analyzer, where we use it for
most of our tests.
There are some other, more popular snapshot testing libraries:
* https://github.com/mitsuhiko/insta
* https://github.com/aaronabramov/k9
The main differences of `expect` are:
* first-class snapshot objects (so, tests can be written as functions,
rather than as macros)
* focus on inline-snapshots (but file snapshots are also supported)
* restricted feature set (only `assert_eq` and `assert_debug_eq`)
* no extra runtime (ie, no `cargo insta`)
See rust-analyzer/rust-analyzer#5101 for a
an extended comparison.
It is unclear if this testing style will stick with rustc in the long
run. At the moment, rustc is mainly tested via integrated UI tests.
But in the library-ified world, unit-tests will become somewhat more
important (that's why use use `rustc_lexer` library-ified library as
an example in this PR). Given that the cost of removal shouldn't be
too high, it probably makes sense to just see if this flies!
Snapshot testing is a technique for writing maintainable unit tests.
Unlike usual `assert_eq!` tests, snapshot tests allow
to *automatically* upgrade expected values on test failure.
In a sense, snapshot tests are inline-version of our beloved
UI-tests.
Example:
![expect](https://user-images.githubusercontent.com/1711539/90888810-3bcc8180-e3b7-11ea-9626-d06e89e1a0bb.gif)
A particular library we use, `expect_test` provides an `expect!`
macro, which creates a sort of self-updating string literal (by using
`file!` macro). Self-update is triggered by setting `UPDATE_EXPECT`
environmental variable (this info is printed during the test failure).
This library was extracted from rust-analyzer, where we use it for
most of our tests.
There are some other, more popular snapshot testing libraries:
* https://github.com/mitsuhiko/insta
* https://github.com/aaronabramov/k9
The main differences of `expect` are:
* first-class snapshot objects (so, tests can be written as functions,
rather than as macros)
* focus on inline-snapshots (but file snapshots are also supported)
* restricted feature set (only `assert_eq` and `assert_debug_eq`)
* no extra runtime (ie, no `cargo insta`)
See https://github.com/rust-analyzer/rust-analyzer/pull/5101 for a
an extended comparison.
It is unclear if this testing style will stick with rustc in the long
run. At the moment, rustc is mainly tested via integrated UI tests.
But in the library-ified world, unit-tests will become somewhat more
important (that's why use use `rustc_lexer` library-ified library as
an example in this PR). Given that the cost of removal shouldn't be
too high, it probably makes sense to just see if this flies!
- Move the type parameter from `encode` and `decode` methods to
the trait.
- Remove `UseSpecialized(En|De)codable` traits.
- Remove blanket impls for references.
- Add `RefDecodable` trait to allow deserializing to arena-allocated
references safely.
- Remove ability to (de)serialize HIR.
- Create proc-macros `(Ty)?(En|De)codable` to help implement these new
traits.
Move platform support to the rustc book.
This moves the [Platform Support](https://forge.rust-lang.org/release/platform-support.html) page from the forge to the rustc book. There are several reasons for doing this:
* The forge is not really oriented towards end-users (it mostly contains infrastructure, governance and policy, internal team pages, etc.). This platform support page is useful to user to know which targets are supported.
* This page can now be updated in-sync with any PRs that add or remove a target, or change its status.
* This is now automatically checked on CI to verify the list does not get out of sync. Currently it only checks the presence/absence of an entry, but more sophisticated checks could be added in the future.
I'm not 100% certain this is the best location, but I think it fits. I'd like to see the rustc guide continue to grow, including things like linking information and more platform-specific details.