//! Implementation of compiling various phases of the compiler and standard //! library. //! //! This module contains some of the real meat in the rustbuild build system //! which is where Cargo is used to compiler the standard library, libtest, and //! compiler. This module is also responsible for assembling the sysroot as it //! goes along from the output of the previous stage. use std::borrow::Cow; use std::collections::HashSet; use std::env; use std::fs; use std::io::prelude::*; use std::io::BufReader; use std::path::{Path, PathBuf}; use std::process::{exit, Command, Stdio}; use std::str; use build_helper::{output, t, up_to_date}; use filetime::FileTime; use serde::Deserialize; use crate::builder::Cargo; use crate::builder::{Builder, Kind, RunConfig, ShouldRun, Step}; use crate::cache::{Interned, INTERNER}; use crate::config::TargetSelection; use crate::dist; use crate::native; use crate::tool::SourceType; use crate::util::{exe, is_debug_info, is_dylib, symlink_dir}; use crate::{Compiler, DependencyType, GitRepo, Mode}; #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)] pub struct Std { pub target: TargetSelection, pub compiler: Compiler, } impl Step for Std { type Output = (); const DEFAULT: bool = true; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { // When downloading stage1, the standard library has already been copied to the sysroot, so // there's no need to rebuild it. let download_rustc = run.builder.config.download_rustc; run.all_krates("test").default_condition(!download_rustc) } fn make_run(run: RunConfig<'_>) { run.builder.ensure(Std { compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()), target: run.target, }); } /// Builds the standard library. /// /// This will build the standard library for a particular stage of the build /// using the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder<'_>) { let target = self.target; let compiler = self.compiler; // These artifacts were already copied (in `impl Step for Sysroot`). // Don't recompile them. if builder.config.download_rustc { return; } if builder.config.keep_stage.contains(&compiler.stage) || builder.config.keep_stage_std.contains(&compiler.stage) { builder.info("Warning: Using a potentially old libstd. This may not behave well."); builder.ensure(StdLink { compiler, target_compiler: compiler, target }); return; } let mut target_deps = builder.ensure(StartupObjects { compiler, target }); let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target); if compiler_to_use != compiler { builder.ensure(Std { compiler: compiler_to_use, target }); builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target)); // Even if we're not building std this stage, the new sysroot must // still contain the third party objects needed by various targets. copy_third_party_objects(builder, &compiler, target); copy_self_contained_objects(builder, &compiler, target); builder.ensure(StdLink { compiler: compiler_to_use, target_compiler: compiler, target, }); return; } target_deps.extend(copy_third_party_objects(builder, &compiler, target)); target_deps.extend(copy_self_contained_objects(builder, &compiler, target)); let mut cargo = builder.cargo(compiler, Mode::Std, SourceType::InTree, target, "build"); std_cargo(builder, target, compiler.stage, &mut cargo); builder.info(&format!( "Building stage{} std artifacts ({} -> {})", compiler.stage, &compiler.host, target )); run_cargo( builder, cargo, vec![], &libstd_stamp(builder, compiler, target), target_deps, false, ); builder.ensure(StdLink { compiler: builder.compiler(compiler.stage, builder.config.build), target_compiler: compiler, target, }); } } fn copy_and_stamp( builder: &Builder<'_>, libdir: &Path, sourcedir: &Path, name: &str, target_deps: &mut Vec<(PathBuf, DependencyType)>, dependency_type: DependencyType, ) { let target = libdir.join(name); builder.copy(&sourcedir.join(name), &target); target_deps.push((target, dependency_type)); } /// Copies third party objects needed by various targets. fn copy_third_party_objects( builder: &Builder<'_>, compiler: &Compiler, target: TargetSelection, ) -> Vec<(PathBuf, DependencyType)> { let mut target_deps = vec![]; // FIXME: remove this in 2021 if target == "x86_64-fortanix-unknown-sgx" { if env::var_os("X86_FORTANIX_SGX_LIBS").is_some() { builder.info("Warning: X86_FORTANIX_SGX_LIBS environment variable is ignored, libunwind is now compiled as part of rustbuild"); } } if builder.config.sanitizers_enabled(target) && compiler.stage != 0 { // The sanitizers are only copied in stage1 or above, // to avoid creating dependency on LLVM. target_deps.extend( copy_sanitizers(builder, &compiler, target) .into_iter() .map(|d| (d, DependencyType::Target)), ); } target_deps } /// Copies third party objects needed by various targets for self-contained linkage. fn copy_self_contained_objects( builder: &Builder<'_>, compiler: &Compiler, target: TargetSelection, ) -> Vec<(PathBuf, DependencyType)> { let libdir_self_contained = builder.sysroot_libdir(*compiler, target).join("self-contained"); t!(fs::create_dir_all(&libdir_self_contained)); let mut target_deps = vec![]; // Copies the CRT objects. // // rustc historically provides a more self-contained installation for musl targets // not requiring the presence of a native musl toolchain. For example, it can fall back // to using gcc from a glibc-targeting toolchain for linking. // To do that we have to distribute musl startup objects as a part of Rust toolchain // and link with them manually in the self-contained mode. if target.contains("musl") { let srcdir = builder.musl_libdir(target).unwrap_or_else(|| { panic!("Target {:?} does not have a \"musl-libdir\" key", target.triple) }); for &obj in &["crt1.o", "Scrt1.o", "rcrt1.o", "crti.o", "crtn.o"] { copy_and_stamp( builder, &libdir_self_contained, &srcdir, obj, &mut target_deps, DependencyType::TargetSelfContained, ); } for &obj in &["crtbegin.o", "crtbeginS.o", "crtend.o", "crtendS.o"] { let src = compiler_file(builder, builder.cc(target), target, obj); let target = libdir_self_contained.join(obj); builder.copy(&src, &target); target_deps.push((target, DependencyType::TargetSelfContained)); } } else if target.ends_with("-wasi") { let srcdir = builder .wasi_root(target) .unwrap_or_else(|| { panic!("Target {:?} does not have a \"wasi-root\" key", target.triple) }) .join("lib/wasm32-wasi"); for &obj in &["crt1-command.o", "crt1-reactor.o"] { copy_and_stamp( builder, &libdir_self_contained, &srcdir, obj, &mut target_deps, DependencyType::TargetSelfContained, ); } } else if target.contains("windows-gnu") { for obj in ["crt2.o", "dllcrt2.o"].iter() { let src = compiler_file(builder, builder.cc(target), target, obj); let target = libdir_self_contained.join(obj); builder.copy(&src, &target); target_deps.push((target, DependencyType::TargetSelfContained)); } } target_deps } /// Configure cargo to compile the standard library, adding appropriate env vars /// and such. pub fn std_cargo(builder: &Builder<'_>, target: TargetSelection, stage: u32, cargo: &mut Cargo) { if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") { cargo.env("MACOSX_DEPLOYMENT_TARGET", target); } // Determine if we're going to compile in optimized C intrinsics to // the `compiler-builtins` crate. These intrinsics live in LLVM's // `compiler-rt` repository, but our `src/llvm-project` submodule isn't // always checked out, so we need to conditionally look for this. (e.g. if // an external LLVM is used we skip the LLVM submodule checkout). // // Note that this shouldn't affect the correctness of `compiler-builtins`, // but only its speed. Some intrinsics in C haven't been translated to Rust // yet but that's pretty rare. Other intrinsics have optimized // implementations in C which have only had slower versions ported to Rust, // so we favor the C version where we can, but it's not critical. // // If `compiler-rt` is available ensure that the `c` feature of the // `compiler-builtins` crate is enabled and it's configured to learn where // `compiler-rt` is located. let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt"); let compiler_builtins_c_feature = if compiler_builtins_root.exists() { // Note that `libprofiler_builtins/build.rs` also computes this so if // you're changing something here please also change that. cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root); " compiler-builtins-c" } else { "" }; if builder.no_std(target) == Some(true) { let mut features = "compiler-builtins-mem".to_string(); features.push_str(compiler_builtins_c_feature); // for no-std targets we only compile a few no_std crates cargo .args(&["-p", "alloc"]) .arg("--manifest-path") .arg(builder.src.join("library/alloc/Cargo.toml")) .arg("--features") .arg(features); } else { let mut features = builder.std_features(target); features.push_str(compiler_builtins_c_feature); cargo .arg("--features") .arg(features) .arg("--manifest-path") .arg(builder.src.join("library/test/Cargo.toml")); // Help the libc crate compile by assisting it in finding various // sysroot native libraries. if target.contains("musl") { if let Some(p) = builder.musl_libdir(target) { let root = format!("native={}", p.to_str().unwrap()); cargo.rustflag("-L").rustflag(&root); } } if target.ends_with("-wasi") { if let Some(p) = builder.wasi_root(target) { let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap()); cargo.rustflag("-L").rustflag(&root); } } } // By default, rustc uses `-Cembed-bitcode=yes`, and Cargo overrides that // with `-Cembed-bitcode=no` for non-LTO builds. However, libstd must be // built with bitcode so that the produced rlibs can be used for both LTO // builds (which use bitcode) and non-LTO builds (which use object code). // So we override the override here! // // But we don't bother for the stage 0 compiler because it's never used // with LTO. // // FIXME: currently e2k llvm backend does not support asm parser if stage >= 1 && !target.starts_with("e2k") { cargo.rustflag("-Cembed-bitcode=yes"); } // By default, rustc does not include unwind tables unless they are required // for a particular target. They are not required by RISC-V targets, but // compiling the standard library with them means that users can get // backtraces without having to recompile the standard library themselves. // // This choice was discussed in https://github.com/rust-lang/rust/pull/69890 if target.contains("riscv") { cargo.rustflag("-Cforce-unwind-tables=yes"); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct StdLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: TargetSelection, } impl Step for StdLink { type Output = (); fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Link all libstd rlibs/dylibs into the sysroot location. /// /// Links those artifacts generated by `compiler` to the `stage` compiler's /// sysroot for the specified `host` and `target`. /// /// Note that this assumes that `compiler` has already generated the libstd /// libraries for `target`, and this method will find them in the relevant /// output directory. fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; builder.info(&format!( "Copying stage{} std from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target )); let libdir = builder.sysroot_libdir(target_compiler, target); let hostdir = builder.sysroot_libdir(target_compiler, compiler.host); add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target)); } } /// Copies sanitizer runtime libraries into target libdir. fn copy_sanitizers( builder: &Builder<'_>, compiler: &Compiler, target: TargetSelection, ) -> Vec { let runtimes: Vec = builder.ensure(native::Sanitizers { target }); if builder.config.dry_run { return Vec::new(); } let mut target_deps = Vec::new(); let libdir = builder.sysroot_libdir(*compiler, target); for runtime in &runtimes { let dst = libdir.join(&runtime.name); builder.copy(&runtime.path, &dst); if target == "x86_64-apple-darwin" || target == "aarch64-apple-darwin" { // Update the library’s install name to reflect that it has has been renamed. apple_darwin_update_library_name(&dst, &format!("@rpath/{}", &runtime.name)); // Upon renaming the install name, the code signature of the file will invalidate, // so we will sign it again. apple_darwin_sign_file(&dst); } target_deps.push(dst); } target_deps } fn apple_darwin_update_library_name(library_path: &Path, new_name: &str) { let status = Command::new("install_name_tool") .arg("-id") .arg(new_name) .arg(library_path) .status() .expect("failed to execute `install_name_tool`"); assert!(status.success()); } fn apple_darwin_sign_file(file_path: &Path) { let status = Command::new("codesign") .arg("-f") // Force to rewrite the existing signature .arg("-s") .arg("-") .arg(file_path) .status() .expect("failed to execute `codesign`"); assert!(status.success()); } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct StartupObjects { pub compiler: Compiler, pub target: TargetSelection, } impl Step for StartupObjects { type Output = Vec<(PathBuf, DependencyType)>; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.path("library/rtstartup") } fn make_run(run: RunConfig<'_>) { run.builder.ensure(StartupObjects { compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()), target: run.target, }); } /// Builds and prepare startup objects like rsbegin.o and rsend.o /// /// These are primarily used on Windows right now for linking executables/dlls. /// They don't require any library support as they're just plain old object /// files, so we just use the nightly snapshot compiler to always build them (as /// no other compilers are guaranteed to be available). fn run(self, builder: &Builder<'_>) -> Vec<(PathBuf, DependencyType)> { let for_compiler = self.compiler; let target = self.target; if !target.contains("windows-gnu") { return vec![]; } let mut target_deps = vec![]; let src_dir = &builder.src.join("library").join("rtstartup"); let dst_dir = &builder.native_dir(target).join("rtstartup"); let sysroot_dir = &builder.sysroot_libdir(for_compiler, target); t!(fs::create_dir_all(dst_dir)); for file in &["rsbegin", "rsend"] { let src_file = &src_dir.join(file.to_string() + ".rs"); let dst_file = &dst_dir.join(file.to_string() + ".o"); if !up_to_date(src_file, dst_file) { let mut cmd = Command::new(&builder.initial_rustc); builder.run( cmd.env("RUSTC_BOOTSTRAP", "1") .arg("--cfg") .arg("bootstrap") .arg("--target") .arg(target.rustc_target_arg()) .arg("--emit=obj") .arg("-o") .arg(dst_file) .arg(src_file), ); } let target = sysroot_dir.join((*file).to_string() + ".o"); builder.copy(dst_file, &target); target_deps.push((target, DependencyType::Target)); } target_deps } } #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)] pub struct Rustc { pub target: TargetSelection, pub compiler: Compiler, } impl Step for Rustc { type Output = (); const ONLY_HOSTS: bool = true; const DEFAULT: bool = false; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.path("compiler/rustc") } fn make_run(run: RunConfig<'_>) { run.builder.ensure(Rustc { compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()), target: run.target, }); } /// Builds the compiler. /// /// This will build the compiler for a particular stage of the build using /// the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target = self.target; if builder.config.download_rustc { // Copy the existing artifacts instead of rebuilding them. // NOTE: this path is only taken for tools linking to rustc-dev. builder.ensure(Sysroot { compiler }); return; } builder.ensure(Std { compiler, target }); if builder.config.keep_stage.contains(&compiler.stage) { builder.info("Warning: Using a potentially old librustc. This may not behave well."); builder.info("Warning: Use `--keep-stage-std` if you want to rebuild the compiler when it changes"); builder.ensure(RustcLink { compiler, target_compiler: compiler, target }); return; } let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target); if compiler_to_use != compiler { builder.ensure(Rustc { compiler: compiler_to_use, target }); builder .info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target)); builder.ensure(RustcLink { compiler: compiler_to_use, target_compiler: compiler, target, }); return; } // Ensure that build scripts and proc macros have a std / libproc_macro to link against. builder.ensure(Std { compiler: builder.compiler(self.compiler.stage, builder.config.build), target: builder.config.build, }); let mut cargo = builder.cargo(compiler, Mode::Rustc, SourceType::InTree, target, "build"); rustc_cargo(builder, &mut cargo, target); if builder.config.rust_profile_use.is_some() && builder.config.rust_profile_generate.is_some() { panic!("Cannot use and generate PGO profiles at the same time"); } let is_collecting = if let Some(path) = &builder.config.rust_profile_generate { if compiler.stage == 1 { cargo.rustflag(&format!("-Cprofile-generate={}", path)); // Apparently necessary to avoid overflowing the counters during // a Cargo build profile cargo.rustflag("-Cllvm-args=-vp-counters-per-site=4"); true } else { false } } else if let Some(path) = &builder.config.rust_profile_use { if compiler.stage == 1 { cargo.rustflag(&format!("-Cprofile-use={}", path)); cargo.rustflag("-Cllvm-args=-pgo-warn-missing-function"); true } else { false } } else { false }; if is_collecting { // Ensure paths to Rust sources are relative, not absolute. cargo.rustflag(&format!( "-Cllvm-args=-static-func-strip-dirname-prefix={}", builder.config.src.components().count() )); } builder.info(&format!( "Building stage{} compiler artifacts ({} -> {})", compiler.stage, &compiler.host, target )); run_cargo( builder, cargo, vec![], &librustc_stamp(builder, compiler, target), vec![], false, ); builder.ensure(RustcLink { compiler: builder.compiler(compiler.stage, builder.config.build), target_compiler: compiler, target, }); } } pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) { cargo .arg("--features") .arg(builder.rustc_features()) .arg("--manifest-path") .arg(builder.src.join("compiler/rustc/Cargo.toml")); rustc_cargo_env(builder, cargo, target); } pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: TargetSelection) { // Set some configuration variables picked up by build scripts and // the compiler alike cargo .env("CFG_RELEASE", builder.rust_release()) .env("CFG_RELEASE_CHANNEL", &builder.config.channel) .env("CFG_VERSION", builder.rust_version()) .env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default()); let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib")); cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative); if let Some(ref ver_date) = builder.rust_info.commit_date() { cargo.env("CFG_VER_DATE", ver_date); } if let Some(ref ver_hash) = builder.rust_info.sha() { cargo.env("CFG_VER_HASH", ver_hash); } if !builder.unstable_features() { cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1"); } if let Some(ref s) = builder.config.rustc_default_linker { cargo.env("CFG_DEFAULT_LINKER", s); } if builder.config.rustc_parallel { cargo.rustflag("--cfg=parallel_compiler"); } if builder.config.rust_verify_llvm_ir { cargo.env("RUSTC_VERIFY_LLVM_IR", "1"); } // Pass down configuration from the LLVM build into the build of // rustc_llvm and rustc_codegen_llvm. // // Note that this is disabled if LLVM itself is disabled or we're in a check // build. If we are in a check build we still go ahead here presuming we've // detected that LLVM is alreay built and good to go which helps prevent // busting caches (e.g. like #71152). if builder.config.llvm_enabled() && (builder.kind != Kind::Check || crate::native::prebuilt_llvm_config(builder, target).is_ok()) { if builder.is_rust_llvm(target) { cargo.env("LLVM_RUSTLLVM", "1"); } let llvm_config = builder.ensure(native::Llvm { target }); cargo.env("LLVM_CONFIG", &llvm_config); let target_config = builder.config.target_config.get(&target); if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) { cargo.env("CFG_LLVM_ROOT", s); } // Some LLVM linker flags (-L and -l) may be needed to link rustc_llvm. if let Some(ref s) = builder.config.llvm_ldflags { cargo.env("LLVM_LINKER_FLAGS", s); } // Building with a static libstdc++ is only supported on linux right now, // not for MSVC or macOS if builder.config.llvm_static_stdcpp && !target.contains("freebsd") && !target.contains("msvc") && !target.contains("apple") { let file = compiler_file(builder, builder.cxx(target).unwrap(), target, "libstdc++.a"); cargo.env("LLVM_STATIC_STDCPP", file); } if builder.config.llvm_link_shared { cargo.env("LLVM_LINK_SHARED", "1"); } if builder.config.llvm_use_libcxx { cargo.env("LLVM_USE_LIBCXX", "1"); } if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo { cargo.env("LLVM_NDEBUG", "1"); } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct RustcLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: TargetSelection, } impl Step for RustcLink { type Output = (); fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Same as `std_link`, only for librustc fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; builder.info(&format!( "Copying stage{} rustc from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target )); add_to_sysroot( builder, &builder.sysroot_libdir(target_compiler, target), &builder.sysroot_libdir(target_compiler, compiler.host), &librustc_stamp(builder, compiler, target), ); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct CodegenBackend { pub target: TargetSelection, pub compiler: Compiler, pub backend: Interned, } impl Step for CodegenBackend { type Output = (); const ONLY_HOSTS: bool = true; // Only the backends specified in the `codegen-backends` entry of `config.toml` are built. const DEFAULT: bool = true; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.path("compiler/rustc_codegen_cranelift") } fn make_run(run: RunConfig<'_>) { for &backend in &run.builder.config.rust_codegen_backends { if backend == "llvm" { continue; // Already built as part of rustc } run.builder.ensure(CodegenBackend { target: run.target, compiler: run.builder.compiler(run.builder.top_stage, run.build_triple()), backend, }); } } fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target = self.target; let backend = self.backend; builder.ensure(Rustc { compiler, target }); if builder.config.keep_stage.contains(&compiler.stage) { builder.info( "Warning: Using a potentially old codegen backend. \ This may not behave well.", ); // Codegen backends are linked separately from this step today, so we don't do // anything here. return; } let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target); if compiler_to_use != compiler { builder.ensure(CodegenBackend { compiler: compiler_to_use, target, backend }); return; } let out_dir = builder.cargo_out(compiler, Mode::Codegen, target); let mut cargo = builder.cargo(compiler, Mode::Codegen, SourceType::Submodule, target, "build"); cargo .arg("--manifest-path") .arg(builder.src.join(format!("compiler/rustc_codegen_{}/Cargo.toml", backend))); rustc_cargo_env(builder, &mut cargo, target); let tmp_stamp = out_dir.join(".tmp.stamp"); let files = run_cargo(builder, cargo, vec![], &tmp_stamp, vec![], false); if builder.config.dry_run { return; } let mut files = files.into_iter().filter(|f| { let filename = f.file_name().unwrap().to_str().unwrap(); is_dylib(filename) && filename.contains("rustc_codegen_") }); let codegen_backend = match files.next() { Some(f) => f, None => panic!("no dylibs built for codegen backend?"), }; if let Some(f) = files.next() { panic!( "codegen backend built two dylibs:\n{}\n{}", codegen_backend.display(), f.display() ); } let stamp = codegen_backend_stamp(builder, compiler, target, backend); let codegen_backend = codegen_backend.to_str().unwrap(); t!(fs::write(&stamp, &codegen_backend)); } } /// Creates the `codegen-backends` folder for a compiler that's about to be /// assembled as a complete compiler. /// /// This will take the codegen artifacts produced by `compiler` and link them /// into an appropriate location for `target_compiler` to be a functional /// compiler. fn copy_codegen_backends_to_sysroot( builder: &Builder<'_>, compiler: Compiler, target_compiler: Compiler, ) { let target = target_compiler.host; // Note that this step is different than all the other `*Link` steps in // that it's not assembling a bunch of libraries but rather is primarily // moving the codegen backend into place. The codegen backend of rustc is // not linked into the main compiler by default but is rather dynamically // selected at runtime for inclusion. // // Here we're looking for the output dylib of the `CodegenBackend` step and // we're copying that into the `codegen-backends` folder. let dst = builder.sysroot_codegen_backends(target_compiler); t!(fs::create_dir_all(&dst), dst); if builder.config.dry_run { return; } for backend in builder.config.rust_codegen_backends.iter() { if backend == "llvm" { continue; // Already built as part of rustc } let stamp = codegen_backend_stamp(builder, compiler, target, *backend); let dylib = t!(fs::read_to_string(&stamp)); let file = Path::new(&dylib); let filename = file.file_name().unwrap().to_str().unwrap(); // change `librustc_codegen_cranelift-xxxxxx.so` to // `librustc_codegen_cranelift-release.so` let target_filename = { let dash = filename.find('-').unwrap(); let dot = filename.find('.').unwrap(); format!("{}-{}{}", &filename[..dash], builder.rust_release(), &filename[dot..]) }; builder.copy(&file, &dst.join(target_filename)); } } /// Cargo's output path for the standard library in a given stage, compiled /// by a particular compiler for the specified target. pub fn libstd_stamp(builder: &Builder<'_>, compiler: Compiler, target: TargetSelection) -> PathBuf { builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp") } /// Cargo's output path for librustc in a given stage, compiled by a particular /// compiler for the specified target. pub fn librustc_stamp( builder: &Builder<'_>, compiler: Compiler, target: TargetSelection, ) -> PathBuf { builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp") } /// Cargo's output path for librustc_codegen_llvm in a given stage, compiled by a particular /// compiler for the specified target and backend. fn codegen_backend_stamp( builder: &Builder<'_>, compiler: Compiler, target: TargetSelection, backend: Interned, ) -> PathBuf { builder .cargo_out(compiler, Mode::Codegen, target) .join(format!(".librustc_codegen_{}.stamp", backend)) } pub fn compiler_file( builder: &Builder<'_>, compiler: &Path, target: TargetSelection, file: &str, ) -> PathBuf { let mut cmd = Command::new(compiler); cmd.args(builder.cflags(target, GitRepo::Rustc)); cmd.arg(format!("-print-file-name={}", file)); let out = output(&mut cmd); PathBuf::from(out.trim()) } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Sysroot { pub compiler: Compiler, } impl Step for Sysroot { type Output = Interned; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Returns the sysroot for the `compiler` specified that *this build system /// generates*. /// /// That is, the sysroot for the stage0 compiler is not what the compiler /// thinks it is by default, but it's the same as the default for stages /// 1-3. fn run(self, builder: &Builder<'_>) -> Interned { let compiler = self.compiler; let sysroot = if compiler.stage == 0 { builder.out.join(&compiler.host.triple).join("stage0-sysroot") } else { builder.out.join(&compiler.host.triple).join(format!("stage{}", compiler.stage)) }; let _ = fs::remove_dir_all(&sysroot); t!(fs::create_dir_all(&sysroot)); // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0. if builder.config.download_rustc { assert_eq!( builder.config.build, compiler.host, "Cross-compiling is not yet supported with `download-rustc`", ); // Copy the compiler into the correct sysroot. let stage0_dir = builder.config.out.join(&*builder.config.build.triple).join("stage0"); builder.cp_r(&stage0_dir, &sysroot); return INTERNER.intern_path(sysroot); } // Symlink the source root into the same location inside the sysroot, // where `rust-src` component would go (`$sysroot/lib/rustlib/src/rust`), // so that any tools relying on `rust-src` also work for local builds, // and also for translating the virtual `/rustc/$hash` back to the real // directory (for running tests with `rust.remap-debuginfo = true`). let sysroot_lib_rustlib_src = sysroot.join("lib/rustlib/src"); t!(fs::create_dir_all(&sysroot_lib_rustlib_src)); let sysroot_lib_rustlib_src_rust = sysroot_lib_rustlib_src.join("rust"); if let Err(e) = symlink_dir(&builder.config, &builder.src, &sysroot_lib_rustlib_src_rust) { eprintln!( "warning: creating symbolic link `{}` to `{}` failed with {}", sysroot_lib_rustlib_src_rust.display(), builder.src.display(), e, ); if builder.config.rust_remap_debuginfo { eprintln!( "warning: some `src/test/ui` tests will fail when lacking `{}`", sysroot_lib_rustlib_src_rust.display(), ); } } INTERNER.intern_path(sysroot) } } #[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)] pub struct Assemble { /// The compiler which we will produce in this step. Assemble itself will /// take care of ensuring that the necessary prerequisites to do so exist, /// that is, this target can be a stage2 compiler and Assemble will build /// previous stages for you. pub target_compiler: Compiler, } impl Step for Assemble { type Output = Compiler; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Prepare a new compiler from the artifacts in `stage` /// /// This will assemble a compiler in `build/$host/stage$stage`. The compiler /// must have been previously produced by the `stage - 1` builder.build /// compiler. fn run(self, builder: &Builder<'_>) -> Compiler { let target_compiler = self.target_compiler; if target_compiler.stage == 0 { assert_eq!( builder.config.build, target_compiler.host, "Cannot obtain compiler for non-native build triple at stage 0" ); // The stage 0 compiler for the build triple is always pre-built. return target_compiler; } // Get the compiler that we'll use to bootstrap ourselves. // // Note that this is where the recursive nature of the bootstrap // happens, as this will request the previous stage's compiler on // downwards to stage 0. // // Also note that we're building a compiler for the host platform. We // only assume that we can run `build` artifacts, which means that to // produce some other architecture compiler we need to start from // `build` to get there. // // FIXME: It may be faster if we build just a stage 1 compiler and then // use that to bootstrap this compiler forward. let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build); // If we're downloading a compiler from CI, we can use the same compiler for all stages other than 0. if builder.config.download_rustc { builder.ensure(Sysroot { compiler: target_compiler }); return target_compiler; } // Build the libraries for this compiler to link to (i.e., the libraries // it uses at runtime). NOTE: Crates the target compiler compiles don't // link to these. (FIXME: Is that correct? It seems to be correct most // of the time but I think we do link to these for stage2/bin compilers // when not performing a full bootstrap). builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host }); for &backend in builder.config.rust_codegen_backends.iter() { if backend == "llvm" { continue; // Already built as part of rustc } builder.ensure(CodegenBackend { compiler: build_compiler, target: target_compiler.host, backend, }); } let lld_install = if builder.config.lld_enabled { Some(builder.ensure(native::Lld { target: target_compiler.host })) } else { None }; let stage = target_compiler.stage; let host = target_compiler.host; builder.info(&format!("Assembling stage{} compiler ({})", stage, host)); // Link in all dylibs to the libdir let stamp = librustc_stamp(builder, build_compiler, target_compiler.host); let proc_macros = builder .read_stamp_file(&stamp) .into_iter() .filter_map(|(path, dependency_type)| { if dependency_type == DependencyType::Host { Some(path.file_name().unwrap().to_owned().into_string().unwrap()) } else { None } }) .collect::>(); let sysroot = builder.sysroot(target_compiler); let rustc_libdir = builder.rustc_libdir(target_compiler); t!(fs::create_dir_all(&rustc_libdir)); let src_libdir = builder.sysroot_libdir(build_compiler, host); for f in builder.read_dir(&src_libdir) { let filename = f.file_name().into_string().unwrap(); if (is_dylib(&filename) || is_debug_info(&filename)) && !proc_macros.contains(&filename) { builder.copy(&f.path(), &rustc_libdir.join(&filename)); } } copy_codegen_backends_to_sysroot(builder, build_compiler, target_compiler); // We prepend this bin directory to the user PATH when linking Rust binaries. To // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`. let libdir = builder.sysroot_libdir(target_compiler, target_compiler.host); let libdir_bin = libdir.parent().unwrap().join("bin"); t!(fs::create_dir_all(&libdir_bin)); if let Some(lld_install) = lld_install { let src_exe = exe("lld", target_compiler.host); let dst_exe = exe("rust-lld", target_compiler.host); builder.copy(&lld_install.join("bin").join(&src_exe), &libdir_bin.join(&dst_exe)); } // Similarly, copy `llvm-dwp` into libdir for Split DWARF. Only copy it when the LLVM // backend is used to avoid unnecessarily building LLVM and because LLVM is not checked // out by default when the LLVM backend is not enabled. if builder.config.rust_codegen_backends.contains(&INTERNER.intern_str("llvm")) { let src_exe = exe("llvm-dwp", target_compiler.host); let dst_exe = exe("rust-llvm-dwp", target_compiler.host); let llvm_config_bin = builder.ensure(native::Llvm { target: target_compiler.host }); if !builder.config.dry_run { let llvm_bin_dir = output(Command::new(llvm_config_bin).arg("--bindir")); let llvm_bin_dir = Path::new(llvm_bin_dir.trim()); builder.copy(&llvm_bin_dir.join(&src_exe), &libdir_bin.join(&dst_exe)); } } // Ensure that `libLLVM.so` ends up in the newly build compiler directory, // so that it can be found when the newly built `rustc` is run. dist::maybe_install_llvm_runtime(builder, target_compiler.host, &sysroot); dist::maybe_install_llvm_target(builder, target_compiler.host, &sysroot); // Link the compiler binary itself into place let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host); let rustc = out_dir.join(exe("rustc-main", host)); let bindir = sysroot.join("bin"); t!(fs::create_dir_all(&bindir)); let compiler = builder.rustc(target_compiler); builder.copy(&rustc, &compiler); target_compiler } } /// Link some files into a rustc sysroot. /// /// For a particular stage this will link the file listed in `stamp` into the /// `sysroot_dst` provided. pub fn add_to_sysroot( builder: &Builder<'_>, sysroot_dst: &Path, sysroot_host_dst: &Path, stamp: &Path, ) { let self_contained_dst = &sysroot_dst.join("self-contained"); t!(fs::create_dir_all(&sysroot_dst)); t!(fs::create_dir_all(&sysroot_host_dst)); t!(fs::create_dir_all(&self_contained_dst)); for (path, dependency_type) in builder.read_stamp_file(stamp) { let dst = match dependency_type { DependencyType::Host => sysroot_host_dst, DependencyType::Target => sysroot_dst, DependencyType::TargetSelfContained => self_contained_dst, }; builder.copy(&path, &dst.join(path.file_name().unwrap())); } } pub fn run_cargo( builder: &Builder<'_>, cargo: Cargo, tail_args: Vec, stamp: &Path, additional_target_deps: Vec<(PathBuf, DependencyType)>, is_check: bool, ) -> Vec { if builder.config.dry_run { return Vec::new(); } // `target_root_dir` looks like $dir/$target/release let target_root_dir = stamp.parent().unwrap(); // `target_deps_dir` looks like $dir/$target/release/deps let target_deps_dir = target_root_dir.join("deps"); // `host_root_dir` looks like $dir/release let host_root_dir = target_root_dir .parent() .unwrap() // chop off `release` .parent() .unwrap() // chop off `$target` .join(target_root_dir.file_name().unwrap()); // Spawn Cargo slurping up its JSON output. We'll start building up the // `deps` array of all files it generated along with a `toplevel` array of // files we need to probe for later. let mut deps = Vec::new(); let mut toplevel = Vec::new(); let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| { let (filenames, crate_types) = match msg { CargoMessage::CompilerArtifact { filenames, target: CargoTarget { crate_types }, .. } => (filenames, crate_types), _ => return, }; for filename in filenames { // Skip files like executables if !(filename.ends_with(".rlib") || filename.ends_with(".lib") || filename.ends_with(".a") || is_debug_info(&filename) || is_dylib(&filename) || (is_check && filename.ends_with(".rmeta"))) { continue; } let filename = Path::new(&*filename); // If this was an output file in the "host dir" we don't actually // worry about it, it's not relevant for us if filename.starts_with(&host_root_dir) { // Unless it's a proc macro used in the compiler if crate_types.iter().any(|t| t == "proc-macro") { deps.push((filename.to_path_buf(), DependencyType::Host)); } continue; } // If this was output in the `deps` dir then this is a precise file // name (hash included) so we start tracking it. if filename.starts_with(&target_deps_dir) { deps.push((filename.to_path_buf(), DependencyType::Target)); continue; } // Otherwise this was a "top level artifact" which right now doesn't // have a hash in the name, but there's a version of this file in // the `deps` folder which *does* have a hash in the name. That's // the one we'll want to we'll probe for it later. // // We do not use `Path::file_stem` or `Path::extension` here, // because some generated files may have multiple extensions e.g. // `std-.dll.lib` on Windows. The aforementioned methods only // split the file name by the last extension (`.lib`) while we need // to split by all extensions (`.dll.lib`). let expected_len = t!(filename.metadata()).len(); let filename = filename.file_name().unwrap().to_str().unwrap(); let mut parts = filename.splitn(2, '.'); let file_stem = parts.next().unwrap().to_owned(); let extension = parts.next().unwrap().to_owned(); toplevel.push((file_stem, extension, expected_len)); } }); if !ok { exit(1); } // Ok now we need to actually find all the files listed in `toplevel`. We've // got a list of prefix/extensions and we basically just need to find the // most recent file in the `deps` folder corresponding to each one. let contents = t!(target_deps_dir.read_dir()) .map(|e| t!(e)) .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata()))) .collect::>(); for (prefix, extension, expected_len) in toplevel { let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| { meta.len() == expected_len && filename .strip_prefix(&prefix[..]) .map(|s| s.starts_with('-') && s.ends_with(&extension[..])) .unwrap_or(false) }); let max = candidates .max_by_key(|&&(_, _, ref metadata)| FileTime::from_last_modification_time(metadata)); let path_to_add = match max { Some(triple) => triple.0.to_str().unwrap(), None => panic!("no output generated for {:?} {:?}", prefix, extension), }; if is_dylib(path_to_add) { let candidate = format!("{}.lib", path_to_add); let candidate = PathBuf::from(candidate); if candidate.exists() { deps.push((candidate, DependencyType::Target)); } } deps.push((path_to_add.into(), DependencyType::Target)); } deps.extend(additional_target_deps); deps.sort(); let mut new_contents = Vec::new(); for (dep, dependency_type) in deps.iter() { new_contents.extend(match *dependency_type { DependencyType::Host => b"h", DependencyType::Target => b"t", DependencyType::TargetSelfContained => b"s", }); new_contents.extend(dep.to_str().unwrap().as_bytes()); new_contents.extend(b"\0"); } t!(fs::write(&stamp, &new_contents)); deps.into_iter().map(|(d, _)| d).collect() } pub fn stream_cargo( builder: &Builder<'_>, cargo: Cargo, tail_args: Vec, cb: &mut dyn FnMut(CargoMessage<'_>), ) -> bool { let mut cargo = Command::from(cargo); if builder.config.dry_run { return true; } // Instruct Cargo to give us json messages on stdout, critically leaving // stderr as piped so we can get those pretty colors. let mut message_format = if builder.config.json_output { String::from("json") } else { String::from("json-render-diagnostics") }; if let Some(s) = &builder.config.rustc_error_format { message_format.push_str(",json-diagnostic-"); message_format.push_str(s); } cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped()); for arg in tail_args { cargo.arg(arg); } builder.verbose(&format!("running: {:?}", cargo)); let mut child = match cargo.spawn() { Ok(child) => child, Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e), }; // Spawn Cargo slurping up its JSON output. We'll start building up the // `deps` array of all files it generated along with a `toplevel` array of // files we need to probe for later. let stdout = BufReader::new(child.stdout.take().unwrap()); for line in stdout.lines() { let line = t!(line); match serde_json::from_str::>(&line) { Ok(msg) => { if builder.config.json_output { // Forward JSON to stdout. println!("{}", line); } cb(msg) } // If this was informational, just print it out and continue Err(_) => println!("{}", line), } } // Make sure Cargo actually succeeded after we read all of its stdout. let status = t!(child.wait()); if !status.success() { eprintln!( "command did not execute successfully: {:?}\n\ expected success, got: {}", cargo, status ); } status.success() } #[derive(Deserialize)] pub struct CargoTarget<'a> { crate_types: Vec>, } #[derive(Deserialize)] #[serde(tag = "reason", rename_all = "kebab-case")] pub enum CargoMessage<'a> { CompilerArtifact { package_id: Cow<'a, str>, features: Vec>, filenames: Vec>, target: CargoTarget<'a>, }, BuildScriptExecuted { package_id: Cow<'a, str>, }, BuildFinished { success: bool, }, }