use log::info; use rustc_ast::ast::{AttrVec, BlockCheckMode}; use rustc_ast::mut_visit::{visit_clobber, MutVisitor, *}; use rustc_ast::ptr::P; use rustc_ast::util::lev_distance::find_best_match_for_name; use rustc_ast::{self, ast}; use rustc_codegen_ssa::traits::CodegenBackend; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; #[cfg(parallel_compiler)] use rustc_data_structures::jobserver; use rustc_data_structures::stable_hasher::StableHasher; use rustc_data_structures::sync::{Lock, Lrc}; use rustc_errors::registry::Registry; use rustc_metadata::dynamic_lib::DynamicLibrary; use rustc_middle::ty; use rustc_resolve::{self, Resolver}; use rustc_session as session; use rustc_session::config::{ErrorOutputType, Input, OutputFilenames}; use rustc_session::lint::{self, BuiltinLintDiagnostics, LintBuffer}; use rustc_session::parse::CrateConfig; use rustc_session::CrateDisambiguator; use rustc_session::{config, early_error, filesearch, output, DiagnosticOutput, Session}; use rustc_span::edition::Edition; use rustc_span::source_map::{FileLoader, SourceMap}; use rustc_span::symbol::{sym, Symbol}; use smallvec::SmallVec; use std::env; use std::io::{self, Write}; use std::mem; use std::ops::DerefMut; use std::path::{Path, PathBuf}; use std::sync::{Arc, Mutex, Once}; #[cfg(not(parallel_compiler))] use std::{panic, thread}; /// Adds `target_feature = "..."` cfgs for a variety of platform /// specific features (SSE, NEON etc.). /// /// This is performed by checking whether a whitelisted set of /// features is available on the target machine, by querying LLVM. pub fn add_configuration( cfg: &mut CrateConfig, sess: &Session, codegen_backend: &dyn CodegenBackend, ) { let tf = sym::target_feature; cfg.extend(codegen_backend.target_features(sess).into_iter().map(|feat| (tf, Some(feat)))); if sess.crt_static_feature(None) { cfg.insert((tf, Some(Symbol::intern("crt-static")))); } } pub fn create_session( sopts: config::Options, cfg: FxHashSet<(String, Option)>, diagnostic_output: DiagnosticOutput, file_loader: Option>, input_path: Option, lint_caps: FxHashMap, descriptions: Registry, ) -> (Lrc, Lrc>, Lrc) { let (mut sess, source_map) = session::build_session_with_source_map( sopts, input_path, descriptions, diagnostic_output, lint_caps, file_loader, ); let codegen_backend = get_codegen_backend(&sess); let mut cfg = config::build_configuration(&sess, config::to_crate_config(cfg)); add_configuration(&mut cfg, &sess, &*codegen_backend); sess.parse_sess.config = cfg; (Lrc::new(sess), Lrc::new(codegen_backend), source_map) } const STACK_SIZE: usize = 2 * 1024 * 1024; fn get_stack_size() -> Option { // FIXME: Hacks on hacks. If the env is trying to override the stack size // then *don't* set it explicitly. env::var_os("RUST_MIN_STACK").is_none().then_some(STACK_SIZE) } struct Sink(Arc>>); impl Write for Sink { fn write(&mut self, data: &[u8]) -> io::Result { Write::write(&mut *self.0.lock().unwrap(), data) } fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[cfg(not(parallel_compiler))] pub fn scoped_thread R + Send, R: Send>(cfg: thread::Builder, f: F) -> R { struct Ptr(*mut ()); unsafe impl Send for Ptr {} unsafe impl Sync for Ptr {} let mut f = Some(f); let run = Ptr(&mut f as *mut _ as *mut ()); let mut result = None; let result_ptr = Ptr(&mut result as *mut _ as *mut ()); let thread = cfg.spawn(move || { let run = unsafe { (*(run.0 as *mut Option)).take().unwrap() }; let result = unsafe { &mut *(result_ptr.0 as *mut Option) }; *result = Some(run()); }); match thread.unwrap().join() { Ok(()) => result.unwrap(), Err(p) => panic::resume_unwind(p), } } #[cfg(not(parallel_compiler))] pub fn spawn_thread_pool R + Send, R: Send>( edition: Edition, _threads: usize, stderr: &Option>>>, f: F, ) -> R { let mut cfg = thread::Builder::new().name("rustc".to_string()); if let Some(size) = get_stack_size() { cfg = cfg.stack_size(size); } crate::callbacks::setup_callbacks(); scoped_thread(cfg, || { rustc_ast::with_globals(edition, || { ty::tls::GCX_PTR.set(&Lock::new(0), || { if let Some(stderr) = stderr { io::set_panic(Some(box Sink(stderr.clone()))); } f() }) }) }) } #[cfg(parallel_compiler)] pub fn spawn_thread_pool R + Send, R: Send>( edition: Edition, threads: usize, stderr: &Option>>>, f: F, ) -> R { use rayon::{ThreadBuilder, ThreadPool, ThreadPoolBuilder}; let gcx_ptr = &Lock::new(0); crate::callbacks::setup_callbacks(); let mut config = ThreadPoolBuilder::new() .thread_name(|_| "rustc".to_string()) .acquire_thread_handler(jobserver::acquire_thread) .release_thread_handler(jobserver::release_thread) .num_threads(threads) .deadlock_handler(|| unsafe { ty::query::handle_deadlock() }); if let Some(size) = get_stack_size() { config = config.stack_size(size); } let with_pool = move |pool: &ThreadPool| pool.install(move || f()); rustc_ast::with_globals(edition, || { rustc_ast::GLOBALS.with(|syntax_globals| { rustc_span::GLOBALS.with(|rustc_span_globals| { // The main handler runs for each Rayon worker thread and sets up // the thread local rustc uses. syntax_globals and rustc_span_globals are // captured and set on the new threads. ty::tls::with_thread_locals sets up // thread local callbacks from librustc_ast let main_handler = move |thread: ThreadBuilder| { rustc_ast::GLOBALS.set(syntax_globals, || { rustc_span::GLOBALS.set(rustc_span_globals, || { if let Some(stderr) = stderr { io::set_panic(Some(box Sink(stderr.clone()))); } ty::tls::GCX_PTR.set(gcx_ptr, || thread.run()) }) }) }; config.build_scoped(main_handler, with_pool).unwrap() }) }) }) } fn load_backend_from_dylib(path: &Path) -> fn() -> Box { let lib = DynamicLibrary::open(path).unwrap_or_else(|err| { let err = format!("couldn't load codegen backend {:?}: {:?}", path, err); early_error(ErrorOutputType::default(), &err); }); unsafe { match lib.symbol("__rustc_codegen_backend") { Ok(f) => { mem::forget(lib); mem::transmute::<*mut u8, _>(f) } Err(e) => { let err = format!( "couldn't load codegen backend as it \ doesn't export the `__rustc_codegen_backend` \ symbol: {:?}", e ); early_error(ErrorOutputType::default(), &err); } } } } pub fn get_codegen_backend(sess: &Session) -> Box { static INIT: Once = Once::new(); static mut LOAD: fn() -> Box = || unreachable!(); INIT.call_once(|| { let codegen_name = sess .opts .debugging_opts .codegen_backend .as_ref() .unwrap_or(&sess.target.target.options.codegen_backend); let backend = match &codegen_name[..] { filename if filename.contains('.') => load_backend_from_dylib(filename.as_ref()), codegen_name => get_builtin_codegen_backend(codegen_name), }; unsafe { LOAD = backend; } }); let backend = unsafe { LOAD() }; backend.init(sess); backend } // This is used for rustdoc, but it uses similar machinery to codegen backend // loading, so we leave the code here. It is potentially useful for other tools // that want to invoke the rustc binary while linking to rustc as well. pub fn rustc_path<'a>() -> Option<&'a Path> { static RUSTC_PATH: once_cell::sync::OnceCell> = once_cell::sync::OnceCell::new(); const BIN_PATH: &str = env!("RUSTC_INSTALL_BINDIR"); RUSTC_PATH.get_or_init(|| get_rustc_path_inner(BIN_PATH)).as_ref().map(|v| &**v) } fn get_rustc_path_inner(bin_path: &str) -> Option { sysroot_candidates().iter().find_map(|sysroot| { let candidate = sysroot.join(bin_path).join(if cfg!(target_os = "windows") { "rustc.exe" } else { "rustc" }); candidate.exists().then_some(candidate) }) } fn sysroot_candidates() -> Vec { let target = session::config::host_triple(); let mut sysroot_candidates = vec![filesearch::get_or_default_sysroot()]; let path = current_dll_path().and_then(|s| s.canonicalize().ok()); if let Some(dll) = path { // use `parent` twice to chop off the file name and then also the // directory containing the dll which should be either `lib` or `bin`. if let Some(path) = dll.parent().and_then(|p| p.parent()) { // The original `path` pointed at the `rustc_driver` crate's dll. // Now that dll should only be in one of two locations. The first is // in the compiler's libdir, for example `$sysroot/lib/*.dll`. The // other is the target's libdir, for example // `$sysroot/lib/rustlib/$target/lib/*.dll`. // // We don't know which, so let's assume that if our `path` above // ends in `$target` we *could* be in the target libdir, and always // assume that we may be in the main libdir. sysroot_candidates.push(path.to_owned()); if path.ends_with(target) { sysroot_candidates.extend( path.parent() // chop off `$target` .and_then(|p| p.parent()) // chop off `rustlib` .and_then(|p| p.parent()) // chop off `lib` .map(|s| s.to_owned()), ); } } } return sysroot_candidates; #[cfg(unix)] fn current_dll_path() -> Option { use std::ffi::{CStr, OsStr}; use std::os::unix::prelude::*; unsafe { let addr = current_dll_path as usize as *mut _; let mut info = mem::zeroed(); if libc::dladdr(addr, &mut info) == 0 { info!("dladdr failed"); return None; } if info.dli_fname.is_null() { info!("dladdr returned null pointer"); return None; } let bytes = CStr::from_ptr(info.dli_fname).to_bytes(); let os = OsStr::from_bytes(bytes); Some(PathBuf::from(os)) } } #[cfg(windows)] fn current_dll_path() -> Option { use std::ffi::OsString; use std::os::windows::prelude::*; use std::ptr; use winapi::um::libloaderapi::{ GetModuleFileNameW, GetModuleHandleExW, GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, }; unsafe { let mut module = ptr::null_mut(); let r = GetModuleHandleExW( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, current_dll_path as usize as *mut _, &mut module, ); if r == 0 { info!("GetModuleHandleExW failed: {}", io::Error::last_os_error()); return None; } let mut space = Vec::with_capacity(1024); let r = GetModuleFileNameW(module, space.as_mut_ptr(), space.capacity() as u32); if r == 0 { info!("GetModuleFileNameW failed: {}", io::Error::last_os_error()); return None; } let r = r as usize; if r >= space.capacity() { info!("our buffer was too small? {}", io::Error::last_os_error()); return None; } space.set_len(r); let os = OsString::from_wide(&space); Some(PathBuf::from(os)) } } } pub fn get_builtin_codegen_backend(backend_name: &str) -> fn() -> Box { #[cfg(feature = "llvm")] { if backend_name == "llvm" { return rustc_codegen_llvm::LlvmCodegenBackend::new; } } let err = format!("unsupported builtin codegen backend `{}`", backend_name); early_error(ErrorOutputType::default(), &err); } pub(crate) fn compute_crate_disambiguator(session: &Session) -> CrateDisambiguator { use std::hash::Hasher; // The crate_disambiguator is a 128 bit hash. The disambiguator is fed // into various other hashes quite a bit (symbol hashes, incr. comp. hashes, // debuginfo type IDs, etc), so we don't want it to be too wide. 128 bits // should still be safe enough to avoid collisions in practice. let mut hasher = StableHasher::new(); let mut metadata = session.opts.cg.metadata.clone(); // We don't want the crate_disambiguator to dependent on the order // -C metadata arguments, so sort them: metadata.sort(); // Every distinct -C metadata value is only incorporated once: metadata.dedup(); hasher.write(b"metadata"); for s in &metadata { // Also incorporate the length of a metadata string, so that we generate // different values for `-Cmetadata=ab -Cmetadata=c` and // `-Cmetadata=a -Cmetadata=bc` hasher.write_usize(s.len()); hasher.write(s.as_bytes()); } // Also incorporate crate type, so that we don't get symbol conflicts when // linking against a library of the same name, if this is an executable. let is_exe = session.crate_types.borrow().contains(&config::CrateType::Executable); hasher.write(if is_exe { b"exe" } else { b"lib" }); CrateDisambiguator::from(hasher.finish::()) } pub(crate) fn check_attr_crate_type(attrs: &[ast::Attribute], lint_buffer: &mut LintBuffer) { // Unconditionally collect crate types from attributes to make them used for a in attrs.iter() { if a.check_name(sym::crate_type) { if let Some(n) = a.value_str() { if categorize_crate_type(n).is_some() { return; } if let ast::MetaItemKind::NameValue(spanned) = a.meta().unwrap().kind { let span = spanned.span; let lev_candidate = find_best_match_for_name( CRATE_TYPES.iter().map(|(k, _)| k), &n.as_str(), None, ); if let Some(candidate) = lev_candidate { lint_buffer.buffer_lint_with_diagnostic( lint::builtin::UNKNOWN_CRATE_TYPES, ast::CRATE_NODE_ID, span, "invalid `crate_type` value", BuiltinLintDiagnostics::UnknownCrateTypes( span, "did you mean".to_string(), format!("\"{}\"", candidate), ), ); } else { lint_buffer.buffer_lint( lint::builtin::UNKNOWN_CRATE_TYPES, ast::CRATE_NODE_ID, span, "invalid `crate_type` value", ); } } } } } } const CRATE_TYPES: &[(Symbol, config::CrateType)] = &[ (sym::rlib, config::CrateType::Rlib), (sym::dylib, config::CrateType::Dylib), (sym::cdylib, config::CrateType::Cdylib), (sym::lib, config::default_lib_output()), (sym::staticlib, config::CrateType::Staticlib), (sym::proc_dash_macro, config::CrateType::ProcMacro), (sym::bin, config::CrateType::Executable), ]; fn categorize_crate_type(s: Symbol) -> Option { Some(CRATE_TYPES.iter().find(|(key, _)| *key == s)?.1) } pub fn collect_crate_types(session: &Session, attrs: &[ast::Attribute]) -> Vec { // Unconditionally collect crate types from attributes to make them used let attr_types: Vec = attrs .iter() .filter_map(|a| { if a.check_name(sym::crate_type) { match a.value_str() { Some(s) => categorize_crate_type(s), _ => None, } } else { None } }) .collect(); // If we're generating a test executable, then ignore all other output // styles at all other locations if session.opts.test { return vec![config::CrateType::Executable]; } // Only check command line flags if present. If no types are specified by // command line, then reuse the empty `base` Vec to hold the types that // will be found in crate attributes. let mut base = session.opts.crate_types.clone(); if base.is_empty() { base.extend(attr_types); if base.is_empty() { base.push(output::default_output_for_target(session)); } else { base.sort(); base.dedup(); } } base.retain(|crate_type| { let res = !output::invalid_output_for_target(session, *crate_type); if !res { session.warn(&format!( "dropping unsupported crate type `{}` for target `{}`", *crate_type, session.opts.target_triple )); } res }); base } pub fn build_output_filenames( input: &Input, odir: &Option, ofile: &Option, attrs: &[ast::Attribute], sess: &Session, ) -> OutputFilenames { match *ofile { None => { // "-" as input file will cause the parser to read from stdin so we // have to make up a name // We want to toss everything after the final '.' let dirpath = (*odir).as_ref().cloned().unwrap_or_default(); // If a crate name is present, we use it as the link name let stem = sess .opts .crate_name .clone() .or_else(|| rustc_attr::find_crate_name(attrs).map(|n| n.to_string())) .unwrap_or_else(|| input.filestem().to_owned()); OutputFilenames::new( dirpath, stem, None, sess.opts.cg.extra_filename.clone(), sess.opts.output_types.clone(), ) } Some(ref out_file) => { let unnamed_output_types = sess.opts.output_types.values().filter(|a| a.is_none()).count(); let ofile = if unnamed_output_types > 1 { sess.warn( "due to multiple output types requested, the explicitly specified \ output file name will be adapted for each output type", ); None } else { if !sess.opts.cg.extra_filename.is_empty() { sess.warn("ignoring -C extra-filename flag due to -o flag"); } Some(out_file.clone()) }; if *odir != None { sess.warn("ignoring --out-dir flag due to -o flag"); } OutputFilenames::new( out_file.parent().unwrap_or_else(|| Path::new("")).to_path_buf(), out_file.file_stem().unwrap_or_default().to_str().unwrap().to_string(), ofile, sess.opts.cg.extra_filename.clone(), sess.opts.output_types.clone(), ) } } } // Note: Also used by librustdoc, see PR #43348. Consider moving this struct elsewhere. // // FIXME: Currently the `everybody_loops` transformation is not applied to: // * `const fn`, due to issue #43636 that `loop` is not supported for const evaluation. We are // waiting for miri to fix that. // * `impl Trait`, due to issue #43869 that functions returning impl Trait cannot be diverging. // Solving this may require `!` to implement every trait, which relies on the an even more // ambitious form of the closed RFC #1637. See also [#34511]. // // [#34511]: https://github.com/rust-lang/rust/issues/34511#issuecomment-322340401 pub struct ReplaceBodyWithLoop<'a, 'b> { within_static_or_const: bool, nested_blocks: Option>, resolver: &'a mut Resolver<'b>, } impl<'a, 'b> ReplaceBodyWithLoop<'a, 'b> { pub fn new(resolver: &'a mut Resolver<'b>) -> ReplaceBodyWithLoop<'a, 'b> { ReplaceBodyWithLoop { within_static_or_const: false, nested_blocks: None, resolver } } fn run R>(&mut self, is_const: bool, action: F) -> R { let old_const = mem::replace(&mut self.within_static_or_const, is_const); let old_blocks = self.nested_blocks.take(); let ret = action(self); self.within_static_or_const = old_const; self.nested_blocks = old_blocks; ret } fn should_ignore_fn(ret_ty: &ast::FnRetTy) -> bool { if let ast::FnRetTy::Ty(ref ty) = ret_ty { fn involves_impl_trait(ty: &ast::Ty) -> bool { match ty.kind { ast::TyKind::ImplTrait(..) => true, ast::TyKind::Slice(ref subty) | ast::TyKind::Array(ref subty, _) | ast::TyKind::Ptr(ast::MutTy { ty: ref subty, .. }) | ast::TyKind::Rptr(_, ast::MutTy { ty: ref subty, .. }) | ast::TyKind::Paren(ref subty) => involves_impl_trait(subty), ast::TyKind::Tup(ref tys) => any_involves_impl_trait(tys.iter()), ast::TyKind::Path(_, ref path) => { path.segments.iter().any(|seg| match seg.args.as_deref() { None => false, Some(&ast::GenericArgs::AngleBracketed(ref data)) => { data.args.iter().any(|arg| match arg { ast::AngleBracketedArg::Arg(arg) => match arg { ast::GenericArg::Type(ty) => involves_impl_trait(ty), ast::GenericArg::Lifetime(_) | ast::GenericArg::Const(_) => false, }, ast::AngleBracketedArg::Constraint(c) => match c.kind { ast::AssocTyConstraintKind::Bound { .. } => true, ast::AssocTyConstraintKind::Equality { ref ty } => { involves_impl_trait(ty) } }, }) } Some(&ast::GenericArgs::Parenthesized(ref data)) => { any_involves_impl_trait(data.inputs.iter()) || ReplaceBodyWithLoop::should_ignore_fn(&data.output) } }) } _ => false, } } fn any_involves_impl_trait<'a, I: Iterator>>(mut it: I) -> bool { it.any(|subty| involves_impl_trait(subty)) } involves_impl_trait(ty) } else { false } } fn is_sig_const(sig: &ast::FnSig) -> bool { matches!(sig.header.constness, ast::Const::Yes(_)) || ReplaceBodyWithLoop::should_ignore_fn(&sig.decl.output) } } impl<'a> MutVisitor for ReplaceBodyWithLoop<'a, '_> { fn visit_item_kind(&mut self, i: &mut ast::ItemKind) { let is_const = match i { ast::ItemKind::Static(..) | ast::ItemKind::Const(..) => true, ast::ItemKind::Fn(_, ref sig, _, _) => Self::is_sig_const(sig), _ => false, }; self.run(is_const, |s| noop_visit_item_kind(i, s)) } fn flat_map_trait_item(&mut self, i: P) -> SmallVec<[P; 1]> { let is_const = match i.kind { ast::AssocItemKind::Const(..) => true, ast::AssocItemKind::Fn(_, ref sig, _, _) => Self::is_sig_const(sig), _ => false, }; self.run(is_const, |s| noop_flat_map_assoc_item(i, s)) } fn flat_map_impl_item(&mut self, i: P) -> SmallVec<[P; 1]> { self.flat_map_trait_item(i) } fn visit_anon_const(&mut self, c: &mut ast::AnonConst) { self.run(true, |s| noop_visit_anon_const(c, s)) } fn visit_block(&mut self, b: &mut P) { fn stmt_to_block( rules: ast::BlockCheckMode, s: Option, resolver: &mut Resolver<'_>, ) -> ast::Block { ast::Block { stmts: s.into_iter().collect(), rules, id: resolver.next_node_id(), span: rustc_span::DUMMY_SP, } } fn block_to_stmt(b: ast::Block, resolver: &mut Resolver<'_>) -> ast::Stmt { let expr = P(ast::Expr { id: resolver.next_node_id(), kind: ast::ExprKind::Block(P(b), None), span: rustc_span::DUMMY_SP, attrs: AttrVec::new(), }); ast::Stmt { id: resolver.next_node_id(), kind: ast::StmtKind::Expr(expr), span: rustc_span::DUMMY_SP, } } let empty_block = stmt_to_block(BlockCheckMode::Default, None, self.resolver); let loop_expr = P(ast::Expr { kind: ast::ExprKind::Loop(P(empty_block), None), id: self.resolver.next_node_id(), span: rustc_span::DUMMY_SP, attrs: AttrVec::new(), }); let loop_stmt = ast::Stmt { id: self.resolver.next_node_id(), span: rustc_span::DUMMY_SP, kind: ast::StmtKind::Expr(loop_expr), }; if self.within_static_or_const { noop_visit_block(b, self) } else { visit_clobber(b.deref_mut(), |b| { let mut stmts = vec![]; for s in b.stmts { let old_blocks = self.nested_blocks.replace(vec![]); stmts.extend(self.flat_map_stmt(s).into_iter().filter(|s| s.is_item())); // we put a Some in there earlier with that replace(), so this is valid let new_blocks = self.nested_blocks.take().unwrap(); self.nested_blocks = old_blocks; stmts.extend(new_blocks.into_iter().map(|b| block_to_stmt(b, self.resolver))); } let mut new_block = ast::Block { stmts, ..b }; if let Some(old_blocks) = self.nested_blocks.as_mut() { //push our fresh block onto the cache and yield an empty block with `loop {}` if !new_block.stmts.is_empty() { old_blocks.push(new_block); } stmt_to_block(b.rules, Some(loop_stmt), &mut self.resolver) } else { //push `loop {}` onto the end of our fresh block and yield that new_block.stmts.push(loop_stmt); new_block } }) } } // in general the pretty printer processes unexpanded code, so // we override the default `visit_mac` method which panics. fn visit_mac(&mut self, mac: &mut ast::MacCall) { noop_visit_mac(mac, self) } }