//! This module implements some validity checks for attributes. //! In particular it verifies that `#[inline]` and `#[repr]` attributes are //! attached to items that actually support them and if there are //! conflicts between multiple such attributes attached to the same //! item. use crate::hir::intravisit::{self, NestedVisitorMap, Visitor}; use crate::lint::builtin::UNUSED_ATTRIBUTES; use crate::ty::query::Providers; use crate::ty::TyCtxt; use errors::struct_span_err; use rustc_error_codes::*; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_hir::DUMMY_HIR_ID; use rustc_hir::{self, HirId, Item, ItemKind, TraitItem, TraitItemKind}; use rustc_span::symbol::sym; use rustc_span::Span; use syntax::ast::Attribute; use syntax::attr; use std::fmt::{self, Display}; #[derive(Copy, Clone, PartialEq)] pub(crate) enum MethodKind { Trait { body: bool }, Inherent, } #[derive(Copy, Clone, PartialEq)] pub(crate) enum Target { ExternCrate, Use, Static, Const, Fn, Closure, Mod, ForeignMod, GlobalAsm, TyAlias, OpaqueTy, Enum, Struct, Union, Trait, TraitAlias, Impl, Expression, Statement, AssocConst, Method(MethodKind), AssocTy, ForeignFn, ForeignStatic, ForeignTy, } impl Display for Target { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!( f, "{}", match *self { Target::ExternCrate => "extern crate", Target::Use => "use", Target::Static => "static item", Target::Const => "constant item", Target::Fn => "function", Target::Closure => "closure", Target::Mod => "module", Target::ForeignMod => "foreign module", Target::GlobalAsm => "global asm", Target::TyAlias => "type alias", Target::OpaqueTy => "opaque type", Target::Enum => "enum", Target::Struct => "struct", Target::Union => "union", Target::Trait => "trait", Target::TraitAlias => "trait alias", Target::Impl => "item", Target::Expression => "expression", Target::Statement => "statement", Target::AssocConst => "associated const", Target::Method(_) => "method", Target::AssocTy => "associated type", Target::ForeignFn => "foreign function", Target::ForeignStatic => "foreign static item", Target::ForeignTy => "foreign type", } ) } } impl Target { pub(crate) fn from_item(item: &Item<'_>) -> Target { match item.kind { ItemKind::ExternCrate(..) => Target::ExternCrate, ItemKind::Use(..) => Target::Use, ItemKind::Static(..) => Target::Static, ItemKind::Const(..) => Target::Const, ItemKind::Fn(..) => Target::Fn, ItemKind::Mod(..) => Target::Mod, ItemKind::ForeignMod(..) => Target::ForeignMod, ItemKind::GlobalAsm(..) => Target::GlobalAsm, ItemKind::TyAlias(..) => Target::TyAlias, ItemKind::OpaqueTy(..) => Target::OpaqueTy, ItemKind::Enum(..) => Target::Enum, ItemKind::Struct(..) => Target::Struct, ItemKind::Union(..) => Target::Union, ItemKind::Trait(..) => Target::Trait, ItemKind::TraitAlias(..) => Target::TraitAlias, ItemKind::Impl(..) => Target::Impl, } } fn from_trait_item(trait_item: &TraitItem<'_>) -> Target { match trait_item.kind { TraitItemKind::Const(..) => Target::AssocConst, TraitItemKind::Method(_, hir::TraitMethod::Required(_)) => { Target::Method(MethodKind::Trait { body: false }) } TraitItemKind::Method(_, hir::TraitMethod::Provided(_)) => { Target::Method(MethodKind::Trait { body: true }) } TraitItemKind::Type(..) => Target::AssocTy, } } fn from_foreign_item(foreign_item: &hir::ForeignItem<'_>) -> Target { match foreign_item.kind { hir::ForeignItemKind::Fn(..) => Target::ForeignFn, hir::ForeignItemKind::Static(..) => Target::ForeignStatic, hir::ForeignItemKind::Type => Target::ForeignTy, } } fn from_impl_item<'tcx>(tcx: TyCtxt<'tcx>, impl_item: &hir::ImplItem<'_>) -> Target { match impl_item.kind { hir::ImplItemKind::Const(..) => Target::AssocConst, hir::ImplItemKind::Method(..) => { let parent_hir_id = tcx.hir().get_parent_item(impl_item.hir_id); let containing_item = tcx.hir().expect_item(parent_hir_id); let containing_impl_is_for_trait = match &containing_item.kind { hir::ItemKind::Impl(_, _, _, _, tr, _, _) => tr.is_some(), _ => bug!("parent of an ImplItem must be an Impl"), }; if containing_impl_is_for_trait { Target::Method(MethodKind::Trait { body: true }) } else { Target::Method(MethodKind::Inherent) } } hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::OpaqueTy(..) => Target::AssocTy, } } } struct CheckAttrVisitor<'tcx> { tcx: TyCtxt<'tcx>, } impl CheckAttrVisitor<'tcx> { /// Checks any attribute. fn check_attributes( &self, hir_id: HirId, attrs: &'hir [Attribute], span: &Span, target: Target, item: Option<&Item<'_>>, ) { let mut is_valid = true; for attr in attrs { is_valid &= if attr.check_name(sym::inline) { self.check_inline(hir_id, attr, span, target) } else if attr.check_name(sym::non_exhaustive) { self.check_non_exhaustive(attr, span, target) } else if attr.check_name(sym::marker) { self.check_marker(attr, span, target) } else if attr.check_name(sym::target_feature) { self.check_target_feature(attr, span, target) } else if attr.check_name(sym::track_caller) { self.check_track_caller(&attr.span, attrs, span, target) } else { true }; } if !is_valid { return; } if target == Target::Fn { self.tcx.codegen_fn_attrs(self.tcx.hir().local_def_id(hir_id)); } self.check_repr(attrs, span, target, item); self.check_used(attrs, target); } /// Checks if an `#[inline]` is applied to a function or a closure. Returns `true` if valid. fn check_inline(&self, hir_id: HirId, attr: &Attribute, span: &Span, target: Target) -> bool { match target { Target::Fn | Target::Closure | Target::Method(MethodKind::Trait { body: true }) | Target::Method(MethodKind::Inherent) => true, Target::Method(MethodKind::Trait { body: false }) | Target::ForeignFn => { self.tcx .struct_span_lint_hir( UNUSED_ATTRIBUTES, hir_id, attr.span, "`#[inline]` is ignored on function prototypes", ) .emit(); true } // FIXME(#65833): We permit associated consts to have an `#[inline]` attribute with // just a lint, because we previously erroneously allowed it and some crates used it // accidentally, to to be compatible with crates depending on them, we can't throw an // error here. Target::AssocConst => { self.tcx .struct_span_lint_hir( UNUSED_ATTRIBUTES, hir_id, attr.span, "`#[inline]` is ignored on constants", ) .warn( "this was previously accepted by the compiler but is \ being phased out; it will become a hard error in \ a future release!", ) .note( "for more information, see issue #65833 \ ", ) .emit(); true } _ => { struct_span_err!( self.tcx.sess, attr.span, E0518, "attribute should be applied to function or closure", ) .span_label(*span, "not a function or closure") .emit(); false } } } /// Checks if a `#[track_caller]` is applied to a non-naked function. Returns `true` if valid. fn check_track_caller( &self, attr_span: &Span, attrs: &'hir [Attribute], span: &Span, target: Target, ) -> bool { match target { Target::Fn if attr::contains_name(attrs, sym::naked) => { struct_span_err!( self.tcx.sess, *attr_span, E0736, "cannot use `#[track_caller]` with `#[naked]`", ) .emit(); false } Target::Fn | Target::Method(MethodKind::Inherent) => true, Target::Method(_) => { struct_span_err!( self.tcx.sess, *attr_span, E0738, "`#[track_caller]` may not be used on trait methods", ) .emit(); false } _ => { struct_span_err!( self.tcx.sess, *attr_span, E0739, "attribute should be applied to function" ) .span_label(*span, "not a function") .emit(); false } } } /// Checks if the `#[non_exhaustive]` attribute on an `item` is valid. Returns `true` if valid. fn check_non_exhaustive(&self, attr: &Attribute, span: &Span, target: Target) -> bool { match target { Target::Struct | Target::Enum => true, _ => { struct_span_err!( self.tcx.sess, attr.span, E0701, "attribute can only be applied to a struct or enum" ) .span_label(*span, "not a struct or enum") .emit(); false } } } /// Checks if the `#[marker]` attribute on an `item` is valid. Returns `true` if valid. fn check_marker(&self, attr: &Attribute, span: &Span, target: Target) -> bool { match target { Target::Trait => true, _ => { self.tcx .sess .struct_span_err(attr.span, "attribute can only be applied to a trait") .span_label(*span, "not a trait") .emit(); false } } } /// Checks if the `#[target_feature]` attribute on `item` is valid. Returns `true` if valid. fn check_target_feature(&self, attr: &Attribute, span: &Span, target: Target) -> bool { match target { Target::Fn | Target::Method(MethodKind::Trait { body: true }) | Target::Method(MethodKind::Inherent) => true, _ => { self.tcx .sess .struct_span_err(attr.span, "attribute should be applied to a function") .span_label(*span, "not a function") .emit(); false } } } /// Checks if the `#[repr]` attributes on `item` are valid. fn check_repr( &self, attrs: &'hir [Attribute], span: &Span, target: Target, item: Option<&Item<'_>>, ) { // Extract the names of all repr hints, e.g., [foo, bar, align] for: // ``` // #[repr(foo)] // #[repr(bar, align(8))] // ``` let hints: Vec<_> = attrs .iter() .filter(|attr| attr.check_name(sym::repr)) .filter_map(|attr| attr.meta_item_list()) .flatten() .collect(); let mut int_reprs = 0; let mut is_c = false; let mut is_simd = false; let mut is_transparent = false; for hint in &hints { let (article, allowed_targets) = match hint.name_or_empty() { name @ sym::C | name @ sym::align => { is_c |= name == sym::C; match target { Target::Struct | Target::Union | Target::Enum => continue, _ => ("a", "struct, enum, or union"), } } sym::packed => { if target != Target::Struct && target != Target::Union { ("a", "struct or union") } else { continue; } } sym::simd => { is_simd = true; if target != Target::Struct { ("a", "struct") } else { continue } } sym::transparent => { is_transparent = true; match target { Target::Struct | Target::Union | Target::Enum => continue, _ => ("a", "struct, enum, or union"), } } sym::i8 | sym::u8 | sym::i16 | sym::u16 | sym::i32 | sym::u32 | sym::i64 | sym::u64 | sym::isize | sym::usize => { int_reprs += 1; if target != Target::Enum { ("an", "enum") } else { continue } } _ => continue, }; self.emit_repr_error( hint.span(), *span, &format!("attribute should be applied to {}", allowed_targets), &format!("not {} {}", article, allowed_targets), ) } // Just point at all repr hints if there are any incompatibilities. // This is not ideal, but tracking precisely which ones are at fault is a huge hassle. let hint_spans = hints.iter().map(|hint| hint.span()); // Error on repr(transparent, ). if is_transparent && hints.len() > 1 { let hint_spans: Vec<_> = hint_spans.clone().collect(); struct_span_err!( self.tcx.sess, hint_spans, E0692, "transparent {} cannot have other repr hints", target ) .emit(); } // Warn on repr(u8, u16), repr(C, simd), and c-like-enum-repr(C, u8) if (int_reprs > 1) || (is_simd && is_c) || (int_reprs == 1 && is_c && item.map_or(false, |item| is_c_like_enum(item))) { struct_span_err!( self.tcx.sess, hint_spans.collect::>(), E0566, "conflicting representation hints", ) .emit(); } } fn emit_repr_error( &self, hint_span: Span, label_span: Span, hint_message: &str, label_message: &str, ) { struct_span_err!(self.tcx.sess, hint_span, E0517, "{}", hint_message) .span_label(label_span, label_message) .emit(); } fn check_stmt_attributes(&self, stmt: &hir::Stmt<'_>) { // When checking statements ignore expressions, they will be checked later if let hir::StmtKind::Local(ref l) = stmt.kind { for attr in l.attrs.iter() { if attr.check_name(sym::inline) { self.check_inline(DUMMY_HIR_ID, attr, &stmt.span, Target::Statement); } if attr.check_name(sym::repr) { self.emit_repr_error( attr.span, stmt.span, "attribute should not be applied to a statement", "not a struct, enum, or union", ); } } } } fn check_expr_attributes(&self, expr: &hir::Expr<'_>) { let target = match expr.kind { hir::ExprKind::Closure(..) => Target::Closure, _ => Target::Expression, }; for attr in expr.attrs.iter() { if attr.check_name(sym::inline) { self.check_inline(DUMMY_HIR_ID, attr, &expr.span, target); } if attr.check_name(sym::repr) { self.emit_repr_error( attr.span, expr.span, "attribute should not be applied to an expression", "not defining a struct, enum, or union", ); } } } fn check_used(&self, attrs: &'hir [Attribute], target: Target) { for attr in attrs { if attr.check_name(sym::used) && target != Target::Static { self.tcx .sess .span_err(attr.span, "attribute must be applied to a `static` variable"); } } } } impl Visitor<'tcx> for CheckAttrVisitor<'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::OnlyBodies(&self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx Item<'tcx>) { let target = Target::from_item(item); self.check_attributes(item.hir_id, item.attrs, &item.span, target, Some(item)); intravisit::walk_item(self, item) } fn visit_trait_item(&mut self, trait_item: &'tcx TraitItem<'tcx>) { let target = Target::from_trait_item(trait_item); self.check_attributes(trait_item.hir_id, &trait_item.attrs, &trait_item.span, target, None); intravisit::walk_trait_item(self, trait_item) } fn visit_foreign_item(&mut self, f_item: &'tcx hir::ForeignItem<'tcx>) { let target = Target::from_foreign_item(f_item); self.check_attributes(f_item.hir_id, &f_item.attrs, &f_item.span, target, None); intravisit::walk_foreign_item(self, f_item) } fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) { let target = Target::from_impl_item(self.tcx, impl_item); self.check_attributes(impl_item.hir_id, &impl_item.attrs, &impl_item.span, target, None); intravisit::walk_impl_item(self, impl_item) } fn visit_stmt(&mut self, stmt: &'tcx hir::Stmt<'tcx>) { self.check_stmt_attributes(stmt); intravisit::walk_stmt(self, stmt) } fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { self.check_expr_attributes(expr); intravisit::walk_expr(self, expr) } } fn is_c_like_enum(item: &Item<'_>) -> bool { if let ItemKind::Enum(ref def, _) = item.kind { for variant in def.variants { match variant.data { hir::VariantData::Unit(..) => { /* continue */ } _ => return false, } } true } else { false } } fn check_mod_attrs(tcx: TyCtxt<'_>, module_def_id: DefId) { tcx.hir() .visit_item_likes_in_module(module_def_id, &mut CheckAttrVisitor { tcx }.as_deep_visitor()); } pub(crate) fn provide(providers: &mut Providers<'_>) { *providers = Providers { check_mod_attrs, ..*providers }; }