// Coherence phase // // The job of the coherence phase of typechecking is to ensure that // each trait has at most one implementation for each type. This is // done by the orphan and overlap modules. Then we build up various // mappings. That mapping code resides here. use crate::hir::def_id::{DefId, LOCAL_CRATE}; use crate::hir::HirId; use errors::struct_span_err; use rustc::traits; use rustc::ty::query::Providers; use rustc::ty::{self, TyCtxt, TypeFoldable}; use rustc_error_codes::*; mod builtin; mod inherent_impls; mod inherent_impls_overlap; mod orphan; mod unsafety; fn check_impl(tcx: TyCtxt<'_>, hir_id: HirId) { let impl_def_id = tcx.hir().local_def_id(hir_id); // If there are no traits, then this implementation must have a // base type. if let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) { debug!( "(checking implementation) adding impl for trait '{:?}', item '{}'", trait_ref, tcx.def_path_str(impl_def_id) ); // Skip impls where one of the self type is an error type. // This occurs with e.g., resolve failures (#30589). if trait_ref.references_error() { return; } enforce_trait_manually_implementable(tcx, impl_def_id, trait_ref.def_id); enforce_empty_impls_for_marker_traits(tcx, impl_def_id, trait_ref.def_id); } } fn enforce_trait_manually_implementable(tcx: TyCtxt<'_>, impl_def_id: DefId, trait_def_id: DefId) { let did = Some(trait_def_id); let li = tcx.lang_items(); let span = tcx.sess.source_map().def_span(tcx.span_of_impl(impl_def_id).unwrap()); // Disallow *all* explicit impls of `Sized` and `Unsize` for now. if did == li.sized_trait() { struct_span_err!( tcx.sess, span, E0322, "explicit impls for the `Sized` trait are not permitted" ) .span_label(span, "impl of 'Sized' not allowed") .emit(); return; } if did == li.unsize_trait() { struct_span_err!( tcx.sess, span, E0328, "explicit impls for the `Unsize` trait are not permitted" ) .span_label(span, "impl of `Unsize` not allowed") .emit(); return; } if tcx.features().unboxed_closures { // the feature gate allows all Fn traits return; } let trait_name = if did == li.fn_trait() { "Fn" } else if did == li.fn_mut_trait() { "FnMut" } else if did == li.fn_once_trait() { "FnOnce" } else { return; // everything OK }; struct_span_err!( tcx.sess, span, E0183, "manual implementations of `{}` are experimental", trait_name ) .span_label(span, format!("manual implementations of `{}` are experimental", trait_name)) .help("add `#![feature(unboxed_closures)]` to the crate attributes to enable") .emit(); } /// We allow impls of marker traits to overlap, so they can't override impls /// as that could make it ambiguous which associated item to use. fn enforce_empty_impls_for_marker_traits(tcx: TyCtxt<'_>, impl_def_id: DefId, trait_def_id: DefId) { if !tcx.trait_def(trait_def_id).is_marker { return; } if tcx.associated_item_def_ids(trait_def_id).is_empty() { return; } let span = tcx.sess.source_map().def_span(tcx.span_of_impl(impl_def_id).unwrap()); struct_span_err!(tcx.sess, span, E0715, "impls for marker traits cannot contain items").emit(); } pub fn provide(providers: &mut Providers<'_>) { use self::builtin::coerce_unsized_info; use self::inherent_impls::{crate_inherent_impls, inherent_impls}; use self::inherent_impls_overlap::crate_inherent_impls_overlap_check; *providers = Providers { coherent_trait, crate_inherent_impls, inherent_impls, crate_inherent_impls_overlap_check, coerce_unsized_info, ..*providers }; } fn coherent_trait(tcx: TyCtxt<'_>, def_id: DefId) { let impls = tcx.hir().trait_impls(def_id); for &impl_id in impls { check_impl(tcx, impl_id); } for &impl_id in impls { check_impl_overlap(tcx, impl_id); } builtin::check_trait(tcx, def_id); } pub fn check_coherence(tcx: TyCtxt<'_>) { for &trait_def_id in tcx.hir().krate().trait_impls.keys() { tcx.ensure().coherent_trait(trait_def_id); } tcx.sess.time("unsafety checking", || unsafety::check(tcx)); tcx.sess.time("orphan checking", || orphan::check(tcx)); // these queries are executed for side-effects (error reporting): tcx.ensure().crate_inherent_impls(LOCAL_CRATE); tcx.ensure().crate_inherent_impls_overlap_check(LOCAL_CRATE); } /// Overlap: no two impls for the same trait are implemented for the /// same type. Likewise, no two inherent impls for a given type /// constructor provide a method with the same name. fn check_impl_overlap<'tcx>(tcx: TyCtxt<'tcx>, hir_id: HirId) { let impl_def_id = tcx.hir().local_def_id(hir_id); let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap(); let trait_def_id = trait_ref.def_id; if trait_ref.references_error() { debug!("coherence: skipping impl {:?} with error {:?}", impl_def_id, trait_ref); return; } // Trigger building the specialization graph for the trait of this impl. // This will detect any overlap errors. tcx.specialization_graph_of(trait_def_id); // check for overlap with the automatic `impl Trait for Trait` if let ty::Dynamic(ref data, ..) = trait_ref.self_ty().kind { // This is something like impl Trait1 for Trait2. Illegal // if Trait1 is a supertrait of Trait2 or Trait2 is not object safe. let component_def_ids = data.iter().flat_map(|predicate| { match predicate.skip_binder() { ty::ExistentialPredicate::Trait(tr) => Some(tr.def_id), ty::ExistentialPredicate::AutoTrait(def_id) => Some(*def_id), // An associated type projection necessarily comes with // an additional `Trait` requirement. ty::ExistentialPredicate::Projection(..) => None, } }); for component_def_id in component_def_ids { if !tcx.is_object_safe(component_def_id) { // Without the 'object_safe_for_dispatch' feature this is an error // which will be reported by wfcheck. Ignore it here. // This is tested by `coherence-impl-trait-for-trait-object-safe.rs`. // With the feature enabled, the trait is not implemented automatically, // so this is valid. } else { let mut supertrait_def_ids = traits::supertrait_def_ids(tcx, component_def_id); if supertrait_def_ids.any(|d| d == trait_def_id) { let sp = tcx.sess.source_map().def_span(tcx.span_of_impl(impl_def_id).unwrap()); struct_span_err!( tcx.sess, sp, E0371, "the object type `{}` automatically implements the trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ) .span_label( sp, format!( "`{}` automatically implements trait `{}`", trait_ref.self_ty(), tcx.def_path_str(trait_def_id) ), ) .emit(); } } } } }