use rustc::middle::cstore::{EncodedMetadata, LibSource, NativeLibrary, NativeLibraryKind}; use rustc::middle::dependency_format::Linkage; use rustc_data_structures::fx::FxHashSet; use rustc_fs_util::fix_windows_verbatim_for_gcc; use rustc_hir::def_id::CrateNum; use rustc_session::config::{ self, CFGuard, DebugInfo, OutputFilenames, OutputType, PrintRequest, Sanitizer, }; use rustc_session::output::{check_file_is_writeable, invalid_output_for_target, out_filename}; use rustc_session::search_paths::PathKind; /// For all the linkers we support, and information they might /// need out of the shared crate context before we get rid of it. use rustc_session::{filesearch, Session}; use rustc_span::symbol::Symbol; use rustc_target::spec::{LinkerFlavor, PanicStrategy, RelroLevel}; use super::archive::ArchiveBuilder; use super::command::Command; use super::linker::Linker; use super::rpath::{self, RPathConfig}; use crate::{ looks_like_rust_object_file, CodegenResults, CrateInfo, METADATA_FILENAME, RLIB_BYTECODE_EXTENSION, }; use cc::windows_registry; use tempfile::{Builder as TempFileBuilder, TempDir}; use std::ascii; use std::char; use std::env; use std::ffi::OsString; use std::fmt; use std::fs; use std::io; use std::path::{Path, PathBuf}; use std::process::{ExitStatus, Output, Stdio}; use std::str; pub fn remove(sess: &Session, path: &Path) { if let Err(e) = fs::remove_file(path) { sess.err(&format!("failed to remove {}: {}", path.display(), e)); } } /// Performs the linkage portion of the compilation phase. This will generate all /// of the requested outputs for this compilation session. pub fn link_binary<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, outputs: &OutputFilenames, crate_name: &str, target_cpu: &str, ) { let _timer = sess.timer("link_binary"); let output_metadata = sess.opts.output_types.contains_key(&OutputType::Metadata); for &crate_type in sess.crate_types.borrow().iter() { // Ignore executable crates if we have -Z no-codegen, as they will error. if (sess.opts.debugging_opts.no_codegen || !sess.opts.output_types.should_codegen()) && !output_metadata && crate_type == config::CrateType::Executable { continue; } if invalid_output_for_target(sess, crate_type) { bug!( "invalid output type `{:?}` for target os `{}`", crate_type, sess.opts.target_triple ); } sess.time("link_binary_check_files_are_writeable", || { for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { check_file_is_writeable(obj, sess); } }); let tmpdir = TempFileBuilder::new() .prefix("rustc") .tempdir() .unwrap_or_else(|err| sess.fatal(&format!("couldn't create a temp dir: {}", err))); if outputs.outputs.should_codegen() { let out_filename = out_filename(sess, crate_type, outputs, crate_name); match crate_type { config::CrateType::Rlib => { let _timer = sess.timer("link_rlib"); link_rlib::( sess, codegen_results, RlibFlavor::Normal, &out_filename, &tmpdir, ) .build(); } config::CrateType::Staticlib => { link_staticlib::(sess, codegen_results, &out_filename, &tmpdir); } _ => { link_natively::( sess, crate_type, &out_filename, codegen_results, tmpdir.path(), target_cpu, ); } } if sess.opts.json_artifact_notifications { sess.parse_sess.span_diagnostic.emit_artifact_notification(&out_filename, "link"); } } if sess.opts.cg.save_temps { let _ = tmpdir.into_path(); } } // Remove the temporary object file and metadata if we aren't saving temps sess.time("link_binary_remove_temps", || { if !sess.opts.cg.save_temps { if sess.opts.output_types.should_codegen() && !preserve_objects_for_their_debuginfo(sess) { for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { remove(sess, obj); } } for obj in codegen_results.modules.iter().filter_map(|m| m.bytecode_compressed.as_ref()) { remove(sess, obj); } if let Some(ref metadata_module) = codegen_results.metadata_module { if let Some(ref obj) = metadata_module.object { remove(sess, obj); } } if let Some(ref allocator_module) = codegen_results.allocator_module { if let Some(ref obj) = allocator_module.object { remove(sess, obj); } if let Some(ref bc) = allocator_module.bytecode_compressed { remove(sess, bc); } } } }); } // The third parameter is for env vars, used on windows to set up the // path for MSVC to find its DLLs, and gcc to find its bundled // toolchain pub fn get_linker(sess: &Session, linker: &Path, flavor: LinkerFlavor) -> (PathBuf, Command) { let msvc_tool = windows_registry::find_tool(&sess.opts.target_triple.triple(), "link.exe"); // If our linker looks like a batch script on Windows then to execute this // we'll need to spawn `cmd` explicitly. This is primarily done to handle // emscripten where the linker is `emcc.bat` and needs to be spawned as // `cmd /c emcc.bat ...`. // // This worked historically but is needed manually since #42436 (regression // was tagged as #42791) and some more info can be found on #44443 for // emscripten itself. let mut cmd = match linker.to_str() { Some(linker) if cfg!(windows) && linker.ends_with(".bat") => Command::bat_script(linker), _ => match flavor { LinkerFlavor::Lld(f) => Command::lld(linker, f), LinkerFlavor::Msvc if sess.opts.cg.linker.is_none() && sess.target.target.options.linker.is_none() => { Command::new(msvc_tool.as_ref().map(|t| t.path()).unwrap_or(linker)) } _ => Command::new(linker), }, }; // UWP apps have API restrictions enforced during Store submissions. // To comply with the Windows App Certification Kit, // MSVC needs to link with the Store versions of the runtime libraries (vcruntime, msvcrt, etc). let t = &sess.target.target; if flavor == LinkerFlavor::Msvc && t.target_vendor == "uwp" { if let Some(ref tool) = msvc_tool { let original_path = tool.path(); if let Some(ref root_lib_path) = original_path.ancestors().nth(4) { let arch = match t.arch.as_str() { "x86_64" => Some("x64".to_string()), "x86" => Some("x86".to_string()), "aarch64" => Some("arm64".to_string()), _ => None, }; if let Some(ref a) = arch { let mut arg = OsString::from("/LIBPATH:"); arg.push(format!("{}\\lib\\{}\\store", root_lib_path.display(), a.to_string())); cmd.arg(&arg); } else { warn!("arch is not supported"); } } else { warn!("MSVC root path lib location not found"); } } else { warn!("link.exe not found"); } } // The compiler's sysroot often has some bundled tools, so add it to the // PATH for the child. let mut new_path = sess.host_filesearch(PathKind::All).get_tools_search_paths(); let mut msvc_changed_path = false; if sess.target.target.options.is_like_msvc { if let Some(ref tool) = msvc_tool { cmd.args(tool.args()); for &(ref k, ref v) in tool.env() { if k == "PATH" { new_path.extend(env::split_paths(v)); msvc_changed_path = true; } else { cmd.env(k, v); } } } } if !msvc_changed_path { if let Some(path) = env::var_os("PATH") { new_path.extend(env::split_paths(&path)); } } cmd.env("PATH", env::join_paths(new_path).unwrap()); (linker.to_path_buf(), cmd) } pub fn each_linked_rlib( info: &CrateInfo, f: &mut dyn FnMut(CrateNum, &Path), ) -> Result<(), String> { let crates = info.used_crates_static.iter(); let mut fmts = None; for (ty, list) in info.dependency_formats.iter() { match ty { config::CrateType::Executable | config::CrateType::Staticlib | config::CrateType::Cdylib | config::CrateType::ProcMacro => { fmts = Some(list); break; } _ => {} } } let fmts = match fmts { Some(f) => f, None => return Err("could not find formats for rlibs".to_string()), }; for &(cnum, ref path) in crates { match fmts.get(cnum.as_usize() - 1) { Some(&Linkage::NotLinked) | Some(&Linkage::IncludedFromDylib) => continue, Some(_) => {} None => return Err("could not find formats for rlibs".to_string()), } let name = &info.crate_name[&cnum]; let path = match *path { LibSource::Some(ref p) => p, LibSource::MetadataOnly => { return Err(format!( "could not find rlib for: `{}`, found rmeta (metadata) file", name )); } LibSource::None => return Err(format!("could not find rlib for: `{}`", name)), }; f(cnum, &path); } Ok(()) } /// We use a temp directory here to avoid races between concurrent rustc processes, /// such as builds in the same directory using the same filename for metadata while /// building an `.rlib` (stomping over one another), or writing an `.rmeta` into a /// directory being searched for `extern crate` (observing an incomplete file). /// The returned path is the temporary file containing the complete metadata. pub fn emit_metadata<'a>( sess: &'a Session, metadata: &EncodedMetadata, tmpdir: &TempDir, ) -> PathBuf { let out_filename = tmpdir.path().join(METADATA_FILENAME); let result = fs::write(&out_filename, &metadata.raw_data); if let Err(e) = result { sess.fatal(&format!("failed to write {}: {}", out_filename.display(), e)); } out_filename } // Create an 'rlib' // // An rlib in its current incarnation is essentially a renamed .a file. The // rlib primarily contains the object file of the crate, but it also contains // all of the object files from native libraries. This is done by unzipping // native libraries and inserting all of the contents into this archive. fn link_rlib<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, flavor: RlibFlavor, out_filename: &Path, tmpdir: &TempDir, ) -> B { info!("preparing rlib to {:?}", out_filename); let mut ab = ::new(sess, out_filename, None); for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { ab.add_file(obj); } // Note that in this loop we are ignoring the value of `lib.cfg`. That is, // we may not be configured to actually include a static library if we're // adding it here. That's because later when we consume this rlib we'll // decide whether we actually needed the static library or not. // // To do this "correctly" we'd need to keep track of which libraries added // which object files to the archive. We don't do that here, however. The // #[link(cfg(..))] feature is unstable, though, and only intended to get // liblibc working. In that sense the check below just indicates that if // there are any libraries we want to omit object files for at link time we // just exclude all custom object files. // // Eventually if we want to stabilize or flesh out the #[link(cfg(..))] // feature then we'll need to figure out how to record what objects were // loaded from the libraries found here and then encode that into the // metadata of the rlib we're generating somehow. for lib in codegen_results.crate_info.used_libraries.iter() { match lib.kind { NativeLibraryKind::NativeStatic => {} NativeLibraryKind::NativeStaticNobundle | NativeLibraryKind::NativeFramework | NativeLibraryKind::NativeRawDylib | NativeLibraryKind::NativeUnknown => continue, } if let Some(name) = lib.name { ab.add_native_library(name); } } // After adding all files to the archive, we need to update the // symbol table of the archive. ab.update_symbols(); // Note that it is important that we add all of our non-object "magical // files" *after* all of the object files in the archive. The reason for // this is as follows: // // * When performing LTO, this archive will be modified to remove // objects from above. The reason for this is described below. // // * When the system linker looks at an archive, it will attempt to // determine the architecture of the archive in order to see whether its // linkable. // // The algorithm for this detection is: iterate over the files in the // archive. Skip magical SYMDEF names. Interpret the first file as an // object file. Read architecture from the object file. // // * As one can probably see, if "metadata" and "foo.bc" were placed // before all of the objects, then the architecture of this archive would // not be correctly inferred once 'foo.o' is removed. // // Basically, all this means is that this code should not move above the // code above. match flavor { RlibFlavor::Normal => { // Instead of putting the metadata in an object file section, rlibs // contain the metadata in a separate file. ab.add_file(&emit_metadata(sess, &codegen_results.metadata, tmpdir)); // For LTO purposes, the bytecode of this library is also inserted // into the archive. for bytecode in codegen_results.modules.iter().filter_map(|m| m.bytecode_compressed.as_ref()) { ab.add_file(bytecode); } // After adding all files to the archive, we need to update the // symbol table of the archive. This currently dies on macOS (see // #11162), and isn't necessary there anyway if !sess.target.target.options.is_like_osx { ab.update_symbols(); } } RlibFlavor::StaticlibBase => { let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref()); if let Some(obj) = obj { ab.add_file(obj); } } } ab } // Create a static archive // // This is essentially the same thing as an rlib, but it also involves adding // all of the upstream crates' objects into the archive. This will slurp in // all of the native libraries of upstream dependencies as well. // // Additionally, there's no way for us to link dynamic libraries, so we warn // about all dynamic library dependencies that they're not linked in. // // There's no need to include metadata in a static archive, so ensure to not // link in the metadata object file (and also don't prepare the archive with a // metadata file). fn link_staticlib<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, codegen_results: &CodegenResults, out_filename: &Path, tempdir: &TempDir, ) { let mut ab = link_rlib::(sess, codegen_results, RlibFlavor::StaticlibBase, out_filename, tempdir); let mut all_native_libs = vec![]; let res = each_linked_rlib(&codegen_results.crate_info, &mut |cnum, path| { let name = &codegen_results.crate_info.crate_name[&cnum]; let native_libs = &codegen_results.crate_info.native_libraries[&cnum]; // Here when we include the rlib into our staticlib we need to make a // decision whether to include the extra object files along the way. // These extra object files come from statically included native // libraries, but they may be cfg'd away with #[link(cfg(..))]. // // This unstable feature, though, only needs liblibc to work. The only // use case there is where musl is statically included in liblibc.rlib, // so if we don't want the included version we just need to skip it. As // a result the logic here is that if *any* linked library is cfg'd away // we just skip all object files. // // Clearly this is not sufficient for a general purpose feature, and // we'd want to read from the library's metadata to determine which // object files come from where and selectively skip them. let skip_object_files = native_libs .iter() .any(|lib| lib.kind == NativeLibraryKind::NativeStatic && !relevant_lib(sess, lib)); ab.add_rlib( path, &name.as_str(), are_upstream_rust_objects_already_included(sess) && !ignored_for_lto(sess, &codegen_results.crate_info, cnum), skip_object_files, ) .unwrap(); all_native_libs.extend(codegen_results.crate_info.native_libraries[&cnum].iter().cloned()); }); if let Err(e) = res { sess.fatal(&e); } ab.update_symbols(); ab.build(); if !all_native_libs.is_empty() { if sess.opts.prints.contains(&PrintRequest::NativeStaticLibs) { print_native_static_libs(sess, &all_native_libs); } } } // Create a dynamic library or executable // // This will invoke the system linker/cc to create the resulting file. This // links to all upstream files as well. fn link_natively<'a, B: ArchiveBuilder<'a>>( sess: &'a Session, crate_type: config::CrateType, out_filename: &Path, codegen_results: &CodegenResults, tmpdir: &Path, target_cpu: &str, ) { info!("preparing {:?} to {:?}", crate_type, out_filename); let (linker, flavor) = linker_and_flavor(sess); let any_dynamic_crate = crate_type == config::CrateType::Dylib || codegen_results.crate_info.dependency_formats.iter().any(|(ty, list)| { *ty == crate_type && list.iter().any(|&linkage| linkage == Linkage::Dynamic) }); // The invocations of cc share some flags across platforms let (pname, mut cmd) = get_linker(sess, &linker, flavor); if let Some(args) = sess.target.target.options.pre_link_args.get(&flavor) { cmd.args(args); } if let Some(args) = sess.target.target.options.pre_link_args_crt.get(&flavor) { if sess.crt_static(Some(crate_type)) { cmd.args(args); } } if let Some(ref args) = sess.opts.debugging_opts.pre_link_args { cmd.args(args); } cmd.args(&sess.opts.debugging_opts.pre_link_arg); if sess.target.target.options.is_like_fuchsia { let prefix = match sess.opts.debugging_opts.sanitizer { Some(Sanitizer::Address) => "asan/", _ => "", }; cmd.arg(format!("--dynamic-linker={}ld.so.1", prefix)); } let pre_link_objects = if crate_type == config::CrateType::Executable { &sess.target.target.options.pre_link_objects_exe } else { &sess.target.target.options.pre_link_objects_dll }; for obj in pre_link_objects { cmd.arg(get_file_path(sess, obj)); } if crate_type == config::CrateType::Executable && sess.crt_static(Some(crate_type)) { for obj in &sess.target.target.options.pre_link_objects_exe_crt { cmd.arg(get_file_path(sess, obj)); } } if sess.target.target.options.is_like_emscripten { cmd.arg("-s"); cmd.arg(if sess.panic_strategy() == PanicStrategy::Abort { "DISABLE_EXCEPTION_CATCHING=1" } else { "DISABLE_EXCEPTION_CATCHING=0" }); } { let mut linker = codegen_results.linker_info.to_linker(cmd, &sess, flavor, target_cpu); link_sanitizer_runtime(sess, crate_type, &mut *linker); link_args::( &mut *linker, flavor, sess, crate_type, tmpdir, out_filename, codegen_results, ); cmd = linker.finalize(); } if let Some(args) = sess.target.target.options.late_link_args.get(&flavor) { cmd.args(args); } if any_dynamic_crate { if let Some(args) = sess.target.target.options.late_link_args_dynamic.get(&flavor) { cmd.args(args); } } else { if let Some(args) = sess.target.target.options.late_link_args_static.get(&flavor) { cmd.args(args); } } for obj in &sess.target.target.options.post_link_objects { cmd.arg(get_file_path(sess, obj)); } if sess.crt_static(Some(crate_type)) { for obj in &sess.target.target.options.post_link_objects_crt { cmd.arg(get_file_path(sess, obj)); } } if let Some(args) = sess.target.target.options.post_link_args.get(&flavor) { cmd.args(args); } for &(ref k, ref v) in &sess.target.target.options.link_env { cmd.env(k, v); } for k in &sess.target.target.options.link_env_remove { cmd.env_remove(k); } if sess.opts.debugging_opts.print_link_args { println!("{:?}", &cmd); } // May have not found libraries in the right formats. sess.abort_if_errors(); // Invoke the system linker info!("{:?}", &cmd); let retry_on_segfault = env::var("RUSTC_RETRY_LINKER_ON_SEGFAULT").is_ok(); let mut prog; let mut i = 0; loop { i += 1; prog = sess.time("run_linker", || exec_linker(sess, &mut cmd, out_filename, tmpdir)); let output = match prog { Ok(ref output) => output, Err(_) => break, }; if output.status.success() { break; } let mut out = output.stderr.clone(); out.extend(&output.stdout); let out = String::from_utf8_lossy(&out); // Check to see if the link failed with "unrecognized command line option: // '-no-pie'" for gcc or "unknown argument: '-no-pie'" for clang. If so, // reperform the link step without the -no-pie option. This is safe because // if the linker doesn't support -no-pie then it should not default to // linking executables as pie. Different versions of gcc seem to use // different quotes in the error message so don't check for them. if sess.target.target.options.linker_is_gnu && flavor != LinkerFlavor::Ld && (out.contains("unrecognized command line option") || out.contains("unknown argument")) && out.contains("-no-pie") && cmd.get_args().iter().any(|e| e.to_string_lossy() == "-no-pie") { info!("linker output: {:?}", out); warn!("Linker does not support -no-pie command line option. Retrying without."); for arg in cmd.take_args() { if arg.to_string_lossy() != "-no-pie" { cmd.arg(arg); } } info!("{:?}", &cmd); continue; } // Here's a terribly awful hack that really shouldn't be present in any // compiler. Here an environment variable is supported to automatically // retry the linker invocation if the linker looks like it segfaulted. // // Gee that seems odd, normally segfaults are things we want to know // about! Unfortunately though in rust-lang/rust#38878 we're // experiencing the linker segfaulting on Travis quite a bit which is // causing quite a bit of pain to land PRs when they spuriously fail // due to a segfault. // // The issue #38878 has some more debugging information on it as well, // but this unfortunately looks like it's just a race condition in // macOS's linker with some thread pool working in the background. It // seems that no one currently knows a fix for this so in the meantime // we're left with this... if !retry_on_segfault || i > 3 { break; } let msg_segv = "clang: error: unable to execute command: Segmentation fault: 11"; let msg_bus = "clang: error: unable to execute command: Bus error: 10"; if out.contains(msg_segv) || out.contains(msg_bus) { warn!( "looks like the linker segfaulted when we tried to call it, \ automatically retrying again. cmd = {:?}, out = {}.", cmd, out, ); continue; } if is_illegal_instruction(&output.status) { warn!( "looks like the linker hit an illegal instruction when we \ tried to call it, automatically retrying again. cmd = {:?}, ]\ out = {}, status = {}.", cmd, out, output.status, ); continue; } #[cfg(unix)] fn is_illegal_instruction(status: &ExitStatus) -> bool { use std::os::unix::prelude::*; status.signal() == Some(libc::SIGILL) } #[cfg(windows)] fn is_illegal_instruction(_status: &ExitStatus) -> bool { false } } match prog { Ok(prog) => { fn escape_string(s: &[u8]) -> String { str::from_utf8(s).map(|s| s.to_owned()).unwrap_or_else(|_| { let mut x = "Non-UTF-8 output: ".to_string(); x.extend(s.iter().flat_map(|&b| ascii::escape_default(b)).map(char::from)); x }) } if !prog.status.success() { let mut output = prog.stderr.clone(); output.extend_from_slice(&prog.stdout); sess.struct_err(&format!( "linking with `{}` failed: {}", pname.display(), prog.status )) .note(&format!("{:?}", &cmd)) .note(&escape_string(&output)) .emit(); sess.abort_if_errors(); } info!("linker stderr:\n{}", escape_string(&prog.stderr)); info!("linker stdout:\n{}", escape_string(&prog.stdout)); } Err(e) => { let linker_not_found = e.kind() == io::ErrorKind::NotFound; let mut linker_error = { if linker_not_found { sess.struct_err(&format!("linker `{}` not found", pname.display())) } else { sess.struct_err(&format!("could not exec the linker `{}`", pname.display())) } }; linker_error.note(&e.to_string()); if !linker_not_found { linker_error.note(&format!("{:?}", &cmd)); } linker_error.emit(); if sess.target.target.options.is_like_msvc && linker_not_found { sess.note_without_error( "the msvc targets depend on the msvc linker \ but `link.exe` was not found", ); sess.note_without_error( "please ensure that VS 2013, VS 2015, VS 2017 or VS 2019 \ was installed with the Visual C++ option", ); } sess.abort_if_errors(); } } // On macOS, debuggers need this utility to get run to do some munging of // the symbols. Note, though, that if the object files are being preserved // for their debug information there's no need for us to run dsymutil. if sess.target.target.options.is_like_osx && sess.opts.debuginfo != DebugInfo::None && !preserve_objects_for_their_debuginfo(sess) { if let Err(e) = Command::new("dsymutil").arg(out_filename).output() { sess.fatal(&format!("failed to run dsymutil: {}", e)) } } } fn link_sanitizer_runtime(sess: &Session, crate_type: config::CrateType, linker: &mut dyn Linker) { let sanitizer = match &sess.opts.debugging_opts.sanitizer { Some(s) => s, None => return, }; if crate_type != config::CrateType::Executable { return; } let name = match sanitizer { Sanitizer::Address => "asan", Sanitizer::Leak => "lsan", Sanitizer::Memory => "msan", Sanitizer::Thread => "tsan", }; let default_sysroot = filesearch::get_or_default_sysroot(); let default_tlib = filesearch::make_target_lib_path(&default_sysroot, sess.opts.target_triple.triple()); let channel = option_env!("CFG_RELEASE_CHANNEL") .map(|channel| format!("-{}", channel)) .unwrap_or_default(); match sess.opts.target_triple.triple() { "x86_64-apple-darwin" => { // On Apple platforms, the sanitizer is always built as a dylib, and // LLVM will link to `@rpath/*.dylib`, so we need to specify an // rpath to the library as well (the rpath should be absolute, see // PR #41352 for details). let libname = format!("rustc{}_rt.{}", channel, name); let rpath = default_tlib.to_str().expect("non-utf8 component in path"); linker.args(&["-Wl,-rpath".into(), "-Xlinker".into(), rpath.into()]); linker.link_dylib(Symbol::intern(&libname)); } "x86_64-unknown-linux-gnu" | "x86_64-fuchsia" | "aarch64-fuchsia" => { let filename = format!("librustc{}_rt.{}.a", channel, name); let path = default_tlib.join(&filename); linker.link_whole_rlib(&path); } _ => {} } } /// Returns a boolean indicating whether the specified crate should be ignored /// during LTO. /// /// Crates ignored during LTO are not lumped together in the "massive object /// file" that we create and are linked in their normal rlib states. See /// comments below for what crates do not participate in LTO. /// /// It's unusual for a crate to not participate in LTO. Typically only /// compiler-specific and unstable crates have a reason to not participate in /// LTO. pub fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool { // If our target enables builtin function lowering in LLVM then the // crates providing these functions don't participate in LTO (e.g. // no_builtins or compiler builtins crates). !sess.target.target.options.no_builtins && (info.compiler_builtins == Some(cnum) || info.is_no_builtins.contains(&cnum)) } pub fn linker_and_flavor(sess: &Session) -> (PathBuf, LinkerFlavor) { fn infer_from( sess: &Session, linker: Option, flavor: Option, ) -> Option<(PathBuf, LinkerFlavor)> { match (linker, flavor) { (Some(linker), Some(flavor)) => Some((linker, flavor)), // only the linker flavor is known; use the default linker for the selected flavor (None, Some(flavor)) => Some(( PathBuf::from(match flavor { LinkerFlavor::Em => { if cfg!(windows) { "emcc.bat" } else { "emcc" } } LinkerFlavor::Gcc => "cc", LinkerFlavor::Ld => "ld", LinkerFlavor::Msvc => "link.exe", LinkerFlavor::Lld(_) => "lld", LinkerFlavor::PtxLinker => "rust-ptx-linker", }), flavor, )), (Some(linker), None) => { let stem = linker.file_stem().and_then(|stem| stem.to_str()).unwrap_or_else(|| { sess.fatal("couldn't extract file stem from specified linker") }); let flavor = if stem == "emcc" { LinkerFlavor::Em } else if stem == "gcc" || stem.ends_with("-gcc") || stem == "clang" || stem.ends_with("-clang") { LinkerFlavor::Gcc } else if stem == "ld" || stem == "ld.lld" || stem.ends_with("-ld") { LinkerFlavor::Ld } else if stem == "link" || stem == "lld-link" { LinkerFlavor::Msvc } else if stem == "lld" || stem == "rust-lld" { LinkerFlavor::Lld(sess.target.target.options.lld_flavor) } else { // fall back to the value in the target spec sess.target.target.linker_flavor }; Some((linker, flavor)) } (None, None) => None, } } // linker and linker flavor specified via command line have precedence over what the target // specification specifies if let Some(ret) = infer_from(sess, sess.opts.cg.linker.clone(), sess.opts.cg.linker_flavor) { return ret; } if let Some(ret) = infer_from( sess, sess.target.target.options.linker.clone().map(PathBuf::from), Some(sess.target.target.linker_flavor), ) { return ret; } bug!("Not enough information provided to determine how to invoke the linker"); } /// Returns a boolean indicating whether we should preserve the object files on /// the filesystem for their debug information. This is often useful with /// split-dwarf like schemes. pub fn preserve_objects_for_their_debuginfo(sess: &Session) -> bool { // If the objects don't have debuginfo there's nothing to preserve. if sess.opts.debuginfo == config::DebugInfo::None { return false; } // If we're only producing artifacts that are archives, no need to preserve // the objects as they're losslessly contained inside the archives. let output_linked = sess .crate_types .borrow() .iter() .any(|&x| x != config::CrateType::Rlib && x != config::CrateType::Staticlib); if !output_linked { return false; } // If we're on OSX then the equivalent of split dwarf is turned on by // default. The final executable won't actually have any debug information // except it'll have pointers to elsewhere. Historically we've always run // `dsymutil` to "link all the dwarf together" but this is actually sort of // a bummer for incremental compilation! (the whole point of split dwarf is // that you don't do this sort of dwarf link). // // Basically as a result this just means that if we're on OSX and we're // *not* running dsymutil then the object files are the only source of truth // for debug information, so we must preserve them. if sess.target.target.options.is_like_osx { match sess.opts.debugging_opts.run_dsymutil { // dsymutil is not being run, preserve objects Some(false) => return true, // dsymutil is being run, no need to preserve the objects Some(true) => return false, // The default historical behavior was to always run dsymutil, so // we're preserving that temporarily, but we're likely to switch the // default soon. None => return false, } } false } pub fn archive_search_paths(sess: &Session) -> Vec { sess.target_filesearch(PathKind::Native).search_path_dirs() } enum RlibFlavor { Normal, StaticlibBase, } pub fn print_native_static_libs(sess: &Session, all_native_libs: &[NativeLibrary]) { let lib_args: Vec<_> = all_native_libs .iter() .filter(|l| relevant_lib(sess, l)) .filter_map(|lib| { let name = lib.name?; match lib.kind { NativeLibraryKind::NativeStaticNobundle | NativeLibraryKind::NativeUnknown => { if sess.target.target.options.is_like_msvc { Some(format!("{}.lib", name)) } else { Some(format!("-l{}", name)) } } NativeLibraryKind::NativeFramework => { // ld-only syntax, since there are no frameworks in MSVC Some(format!("-framework {}", name)) } // These are included, no need to print them NativeLibraryKind::NativeStatic | NativeLibraryKind::NativeRawDylib => None, } }) .collect(); if !lib_args.is_empty() { sess.note_without_error( "Link against the following native artifacts when linking \ against this static library. The order and any duplication \ can be significant on some platforms.", ); // Prefix for greppability sess.note_without_error(&format!("native-static-libs: {}", &lib_args.join(" "))); } } // Because windows-gnu target is meant to be self-contained for pure Rust code it bundles // own mingw-w64 libraries. These libraries are usually not compatible with mingw-w64 // installed in the system. This breaks many cases where Rust is mixed with other languages // (e.g. *-sys crates). // We prefer system mingw-w64 libraries if they are available to avoid this issue. fn get_crt_libs_path(sess: &Session) -> Option { fn find_exe_in_path

(exe_name: P) -> Option where P: AsRef, { for dir in env::split_paths(&env::var_os("PATH")?) { let full_path = dir.join(&exe_name); if full_path.is_file() { return Some(fix_windows_verbatim_for_gcc(&full_path)); } } None } fn probe(sess: &Session) -> Option { if let (linker, LinkerFlavor::Gcc) = linker_and_flavor(&sess) { let linker_path = if cfg!(windows) && linker.extension().is_none() { linker.with_extension("exe") } else { linker }; if let Some(linker_path) = find_exe_in_path(linker_path) { let mingw_arch = match &sess.target.target.arch { x if x == "x86" => "i686", x => x, }; let mingw_bits = &sess.target.target.target_pointer_width; let mingw_dir = format!("{}-w64-mingw32", mingw_arch); // Here we have path/bin/gcc but we need path/ let mut path = linker_path; path.pop(); path.pop(); // Loosely based on Clang MinGW driver let probe_paths = vec![ path.join(&mingw_dir).join("lib"), // Typical path path.join(&mingw_dir).join("sys-root/mingw/lib"), // Rare path path.join(format!( "lib/mingw/tools/install/mingw{}/{}/lib", &mingw_bits, &mingw_dir )), // Chocolatey is creative ]; for probe_path in probe_paths { if probe_path.join("crt2.o").exists() { return Some(probe_path); }; } }; }; None } let mut system_library_path = sess.system_library_path.borrow_mut(); match &*system_library_path { Some(Some(compiler_libs_path)) => Some(compiler_libs_path.clone()), Some(None) => None, None => { let path = probe(sess); *system_library_path = Some(path.clone()); path } } } pub fn get_file_path(sess: &Session, name: &str) -> PathBuf { // prefer system {,dll}crt2.o libs, see get_crt_libs_path comment for more details if sess.target.target.llvm_target.contains("windows-gnu") { if let Some(compiler_libs_path) = get_crt_libs_path(sess) { let file_path = compiler_libs_path.join(name); if file_path.exists() { return file_path; } } } let fs = sess.target_filesearch(PathKind::Native); let file_path = fs.get_lib_path().join(name); if file_path.exists() { return file_path; } for search_path in fs.search_paths() { let file_path = search_path.dir.join(name); if file_path.exists() { return file_path; } } PathBuf::from(name) } pub fn exec_linker( sess: &Session, cmd: &mut Command, out_filename: &Path, tmpdir: &Path, ) -> io::Result { // When attempting to spawn the linker we run a risk of blowing out the // size limits for spawning a new process with respect to the arguments // we pass on the command line. // // Here we attempt to handle errors from the OS saying "your list of // arguments is too big" by reinvoking the linker again with an `@`-file // that contains all the arguments. The theory is that this is then // accepted on all linkers and the linker will read all its options out of // there instead of looking at the command line. if !cmd.very_likely_to_exceed_some_spawn_limit() { match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() { Ok(child) => { let output = child.wait_with_output(); flush_linked_file(&output, out_filename)?; return output; } Err(ref e) if command_line_too_big(e) => { info!("command line to linker was too big: {}", e); } Err(e) => return Err(e), } } info!("falling back to passing arguments to linker via an @-file"); let mut cmd2 = cmd.clone(); let mut args = String::new(); for arg in cmd2.take_args() { args.push_str( &Escape { arg: arg.to_str().unwrap(), is_like_msvc: sess.target.target.options.is_like_msvc, } .to_string(), ); args.push_str("\n"); } let file = tmpdir.join("linker-arguments"); let bytes = if sess.target.target.options.is_like_msvc { let mut out = Vec::with_capacity((1 + args.len()) * 2); // start the stream with a UTF-16 BOM for c in std::iter::once(0xFEFF).chain(args.encode_utf16()) { // encode in little endian out.push(c as u8); out.push((c >> 8) as u8); } out } else { args.into_bytes() }; fs::write(&file, &bytes)?; cmd2.arg(format!("@{}", file.display())); info!("invoking linker {:?}", cmd2); let output = cmd2.output(); flush_linked_file(&output, out_filename)?; return output; #[cfg(unix)] fn flush_linked_file(_: &io::Result, _: &Path) -> io::Result<()> { Ok(()) } #[cfg(windows)] fn flush_linked_file( command_output: &io::Result, out_filename: &Path, ) -> io::Result<()> { // On Windows, under high I/O load, output buffers are sometimes not flushed, // even long after process exit, causing nasty, non-reproducible output bugs. // // File::sync_all() calls FlushFileBuffers() down the line, which solves the problem. // // А full writeup of the original Chrome bug can be found at // randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp if let &Ok(ref out) = command_output { if out.status.success() { if let Ok(of) = fs::OpenOptions::new().write(true).open(out_filename) { of.sync_all()?; } } } Ok(()) } #[cfg(unix)] fn command_line_too_big(err: &io::Error) -> bool { err.raw_os_error() == Some(::libc::E2BIG) } #[cfg(windows)] fn command_line_too_big(err: &io::Error) -> bool { const ERROR_FILENAME_EXCED_RANGE: i32 = 206; err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE) } struct Escape<'a> { arg: &'a str, is_like_msvc: bool, } impl<'a> fmt::Display for Escape<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.is_like_msvc { // This is "documented" at // https://docs.microsoft.com/en-us/cpp/build/reference/at-specify-a-linker-response-file // // Unfortunately there's not a great specification of the // syntax I could find online (at least) but some local // testing showed that this seemed sufficient-ish to catch // at least a few edge cases. write!(f, "\"")?; for c in self.arg.chars() { match c { '"' => write!(f, "\\{}", c)?, c => write!(f, "{}", c)?, } } write!(f, "\"")?; } else { // This is documented at https://linux.die.net/man/1/ld, namely: // // > Options in file are separated by whitespace. A whitespace // > character may be included in an option by surrounding the // > entire option in either single or double quotes. Any // > character (including a backslash) may be included by // > prefixing the character to be included with a backslash. // // We put an argument on each line, so all we need to do is // ensure the line is interpreted as one whole argument. for c in self.arg.chars() { match c { '\\' | ' ' => write!(f, "\\{}", c)?, c => write!(f, "{}", c)?, } } } Ok(()) } } } fn link_args<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, flavor: LinkerFlavor, sess: &'a Session, crate_type: config::CrateType, tmpdir: &Path, out_filename: &Path, codegen_results: &CodegenResults, ) { // Linker plugins should be specified early in the list of arguments cmd.linker_plugin_lto(); // The default library location, we need this to find the runtime. // The location of crates will be determined as needed. let lib_path = sess.target_filesearch(PathKind::All).get_lib_path(); // target descriptor let t = &sess.target.target; // prefer system mingw-w64 libs, see get_crt_libs_path comment for more details if cfg!(windows) && sess.target.target.llvm_target.contains("windows-gnu") { if let Some(compiler_libs_path) = get_crt_libs_path(sess) { cmd.include_path(&compiler_libs_path); } } cmd.include_path(&fix_windows_verbatim_for_gcc(&lib_path)); for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) { cmd.add_object(obj); } cmd.output_filename(out_filename); if crate_type == config::CrateType::Executable && sess.target.target.options.is_like_windows { if let Some(ref s) = codegen_results.windows_subsystem { cmd.subsystem(s); } } // If we're building something like a dynamic library then some platforms // need to make sure that all symbols are exported correctly from the // dynamic library. cmd.export_symbols(tmpdir, crate_type); // When linking a dynamic library, we put the metadata into a section of the // executable. This metadata is in a separate object file from the main // object file, so we link that in here. if crate_type == config::CrateType::Dylib || crate_type == config::CrateType::ProcMacro { let obj = codegen_results.metadata_module.as_ref().and_then(|m| m.object.as_ref()); if let Some(obj) = obj { cmd.add_object(obj); } } let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref()); if let Some(obj) = obj { cmd.add_object(obj); } // Try to strip as much out of the generated object by removing unused // sections if possible. See more comments in linker.rs if !sess.opts.cg.link_dead_code { let keep_metadata = crate_type == config::CrateType::Dylib; cmd.gc_sections(keep_metadata); } let used_link_args = &codegen_results.crate_info.link_args; if crate_type == config::CrateType::Executable { let mut position_independent_executable = false; if t.options.position_independent_executables { let empty_vec = Vec::new(); let args = sess.opts.cg.link_args.as_ref().unwrap_or(&empty_vec); let more_args = &sess.opts.cg.link_arg; let mut args = args.iter().chain(more_args.iter()).chain(used_link_args.iter()); if is_pic(sess) && !sess.crt_static(Some(crate_type)) && !args.any(|x| *x == "-static") { position_independent_executable = true; } } if position_independent_executable { cmd.position_independent_executable(); } else { // recent versions of gcc can be configured to generate position // independent executables by default. We have to pass -no-pie to // explicitly turn that off. Not applicable to ld. if sess.target.target.options.linker_is_gnu && flavor != LinkerFlavor::Ld { cmd.no_position_independent_executable(); } } } let relro_level = match sess.opts.debugging_opts.relro_level { Some(level) => level, None => t.options.relro_level, }; match relro_level { RelroLevel::Full => { cmd.full_relro(); } RelroLevel::Partial => { cmd.partial_relro(); } RelroLevel::Off => { cmd.no_relro(); } RelroLevel::None => {} } // Pass optimization flags down to the linker. cmd.optimize(); // Pass debuginfo flags down to the linker. cmd.debuginfo(); // We want to, by default, prevent the compiler from accidentally leaking in // any system libraries, so we may explicitly ask linkers to not link to any // libraries by default. Note that this does not happen for windows because // windows pulls in some large number of libraries and I couldn't quite // figure out which subset we wanted. // // This is all naturally configurable via the standard methods as well. if !sess.opts.cg.default_linker_libraries.unwrap_or(false) && t.options.no_default_libraries { cmd.no_default_libraries(); } // Take careful note of the ordering of the arguments we pass to the linker // here. Linkers will assume that things on the left depend on things to the // right. Things on the right cannot depend on things on the left. This is // all formally implemented in terms of resolving symbols (libs on the right // resolve unknown symbols of libs on the left, but not vice versa). // // For this reason, we have organized the arguments we pass to the linker as // such: // // 1. The local object that LLVM just generated // 2. Local native libraries // 3. Upstream rust libraries // 4. Upstream native libraries // // The rationale behind this ordering is that those items lower down in the // list can't depend on items higher up in the list. For example nothing can // depend on what we just generated (e.g., that'd be a circular dependency). // Upstream rust libraries are not allowed to depend on our local native // libraries as that would violate the structure of the DAG, in that // scenario they are required to link to them as well in a shared fashion. // // Note that upstream rust libraries may contain native dependencies as // well, but they also can't depend on what we just started to add to the // link line. And finally upstream native libraries can't depend on anything // in this DAG so far because they're only dylibs and dylibs can only depend // on other dylibs (e.g., other native deps). add_local_native_libraries(cmd, sess, codegen_results); add_upstream_rust_crates::(cmd, sess, codegen_results, crate_type, tmpdir); add_upstream_native_libraries(cmd, sess, codegen_results, crate_type); // Tell the linker what we're doing. if crate_type != config::CrateType::Executable { cmd.build_dylib(out_filename); } if crate_type == config::CrateType::Executable && sess.crt_static(Some(crate_type)) { cmd.build_static_executable(); } if sess.opts.cg.profile_generate.enabled() { cmd.pgo_gen(); } if sess.opts.debugging_opts.control_flow_guard != CFGuard::Disabled { cmd.control_flow_guard(); } // FIXME (#2397): At some point we want to rpath our guesses as to // where extern libraries might live, based on the // addl_lib_search_paths if sess.opts.cg.rpath { let target_triple = sess.opts.target_triple.triple(); let mut get_install_prefix_lib_path = || { let install_prefix = option_env!("CFG_PREFIX").expect("CFG_PREFIX"); let tlib = filesearch::relative_target_lib_path(&sess.sysroot, target_triple); let mut path = PathBuf::from(install_prefix); path.push(&tlib); path }; let mut rpath_config = RPathConfig { used_crates: &codegen_results.crate_info.used_crates_dynamic, out_filename: out_filename.to_path_buf(), has_rpath: sess.target.target.options.has_rpath, is_like_osx: sess.target.target.options.is_like_osx, linker_is_gnu: sess.target.target.options.linker_is_gnu, get_install_prefix_lib_path: &mut get_install_prefix_lib_path, }; cmd.args(&rpath::get_rpath_flags(&mut rpath_config)); } // Finally add all the linker arguments provided on the command line along // with any #[link_args] attributes found inside the crate if let Some(ref args) = sess.opts.cg.link_args { cmd.args(args); } cmd.args(&sess.opts.cg.link_arg); cmd.args(&used_link_args); } // # Native library linking // // User-supplied library search paths (-L on the command line). These are // the same paths used to find Rust crates, so some of them may have been // added already by the previous crate linking code. This only allows them // to be found at compile time so it is still entirely up to outside // forces to make sure that library can be found at runtime. // // Also note that the native libraries linked here are only the ones located // in the current crate. Upstream crates with native library dependencies // may have their native library pulled in above. pub fn add_local_native_libraries( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, ) { let filesearch = sess.target_filesearch(PathKind::All); for search_path in filesearch.search_paths() { match search_path.kind { PathKind::Framework => { cmd.framework_path(&search_path.dir); } _ => { cmd.include_path(&fix_windows_verbatim_for_gcc(&search_path.dir)); } } } let relevant_libs = codegen_results.crate_info.used_libraries.iter().filter(|l| relevant_lib(sess, l)); let search_path = archive_search_paths(sess); for lib in relevant_libs { let name = match lib.name { Some(l) => l, None => continue, }; match lib.kind { NativeLibraryKind::NativeUnknown => cmd.link_dylib(name), NativeLibraryKind::NativeFramework => cmd.link_framework(name), NativeLibraryKind::NativeStaticNobundle => cmd.link_staticlib(name), NativeLibraryKind::NativeStatic => cmd.link_whole_staticlib(name, &search_path), NativeLibraryKind::NativeRawDylib => { // FIXME(#58713): Proper handling for raw dylibs. bug!("raw_dylib feature not yet implemented"); } } } } // # Rust Crate linking // // Rust crates are not considered at all when creating an rlib output. All // dependencies will be linked when producing the final output (instead of // the intermediate rlib version) fn add_upstream_rust_crates<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, sess: &'a Session, codegen_results: &CodegenResults, crate_type: config::CrateType, tmpdir: &Path, ) { // All of the heavy lifting has previously been accomplished by the // dependency_format module of the compiler. This is just crawling the // output of that module, adding crates as necessary. // // Linking to a rlib involves just passing it to the linker (the linker // will slurp up the object files inside), and linking to a dynamic library // involves just passing the right -l flag. let (_, data) = codegen_results .crate_info .dependency_formats .iter() .find(|(ty, _)| *ty == crate_type) .expect("failed to find crate type in dependency format list"); // Invoke get_used_crates to ensure that we get a topological sorting of // crates. let deps = &codegen_results.crate_info.used_crates_dynamic; // There's a few internal crates in the standard library (aka libcore and // libstd) which actually have a circular dependence upon one another. This // currently arises through "weak lang items" where libcore requires things // like `rust_begin_unwind` but libstd ends up defining it. To get this // circular dependence to work correctly in all situations we'll need to be // sure to correctly apply the `--start-group` and `--end-group` options to // GNU linkers, otherwise if we don't use any other symbol from the standard // library it'll get discarded and the whole application won't link. // // In this loop we're calculating the `group_end`, after which crate to // pass `--end-group` and `group_start`, before which crate to pass // `--start-group`. We currently do this by passing `--end-group` after // the first crate (when iterating backwards) that requires a lang item // defined somewhere else. Once that's set then when we've defined all the // necessary lang items we'll pass `--start-group`. // // Note that this isn't amazing logic for now but it should do the trick // for the current implementation of the standard library. let mut group_end = None; let mut group_start = None; // Crates available for linking thus far. let mut available = FxHashSet::default(); // Crates required to satisfy dependencies discovered so far. let mut required = FxHashSet::default(); let info = &codegen_results.crate_info; for &(cnum, _) in deps.iter().rev() { if let Some(missing) = info.missing_lang_items.get(&cnum) { let missing_crates = missing.iter().map(|i| info.lang_item_to_crate.get(i).copied()); required.extend(missing_crates); } required.insert(Some(cnum)); available.insert(Some(cnum)); if required.len() > available.len() && group_end.is_none() { group_end = Some(cnum); } if required.len() == available.len() && group_end.is_some() { group_start = Some(cnum); break; } } // If we didn't end up filling in all lang items from upstream crates then // we'll be filling it in with our crate. This probably means we're the // standard library itself, so skip this for now. if group_end.is_some() && group_start.is_none() { group_end = None; } let mut compiler_builtins = None; for &(cnum, _) in deps.iter() { if group_start == Some(cnum) { cmd.group_start(); } // We may not pass all crates through to the linker. Some crates may // appear statically in an existing dylib, meaning we'll pick up all the // symbols from the dylib. let src = &codegen_results.crate_info.used_crate_source[&cnum]; match data[cnum.as_usize() - 1] { _ if codegen_results.crate_info.profiler_runtime == Some(cnum) => { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } // compiler-builtins are always placed last to ensure that they're // linked correctly. _ if codegen_results.crate_info.compiler_builtins == Some(cnum) => { assert!(compiler_builtins.is_none()); compiler_builtins = Some(cnum); } Linkage::NotLinked | Linkage::IncludedFromDylib => {} Linkage::Static => { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } Linkage::Dynamic => add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0), } if group_end == Some(cnum) { cmd.group_end(); } } // compiler-builtins are always placed last to ensure that they're // linked correctly. // We must always link the `compiler_builtins` crate statically. Even if it // was already "included" in a dylib (e.g., `libstd` when `-C prefer-dynamic` // is used) if let Some(cnum) = compiler_builtins { add_static_crate::(cmd, sess, codegen_results, tmpdir, crate_type, cnum); } // Converts a library file-stem into a cc -l argument fn unlib<'a>(config: &config::Config, stem: &'a str) -> &'a str { if stem.starts_with("lib") && !config.target.options.is_like_windows { &stem[3..] } else { stem } } // Adds the static "rlib" versions of all crates to the command line. // There's a bit of magic which happens here specifically related to LTO and // dynamic libraries. Specifically: // // * For LTO, we remove upstream object files. // * For dylibs we remove metadata and bytecode from upstream rlibs // // When performing LTO, almost(*) all of the bytecode from the upstream // libraries has already been included in our object file output. As a // result we need to remove the object files in the upstream libraries so // the linker doesn't try to include them twice (or whine about duplicate // symbols). We must continue to include the rest of the rlib, however, as // it may contain static native libraries which must be linked in. // // (*) Crates marked with `#![no_builtins]` don't participate in LTO and // their bytecode wasn't included. The object files in those libraries must // still be passed to the linker. // // When making a dynamic library, linkers by default don't include any // object files in an archive if they're not necessary to resolve the link. // We basically want to convert the archive (rlib) to a dylib, though, so we // *do* want everything included in the output, regardless of whether the // linker thinks it's needed or not. As a result we must use the // --whole-archive option (or the platform equivalent). When using this // option the linker will fail if there are non-objects in the archive (such // as our own metadata and/or bytecode). All in all, for rlibs to be // entirely included in dylibs, we need to remove all non-object files. // // Note, however, that if we're not doing LTO or we're not producing a dylib // (aka we're making an executable), we can just pass the rlib blindly to // the linker (fast) because it's fine if it's not actually included as // we're at the end of the dependency chain. fn add_static_crate<'a, B: ArchiveBuilder<'a>>( cmd: &mut dyn Linker, sess: &'a Session, codegen_results: &CodegenResults, tmpdir: &Path, crate_type: config::CrateType, cnum: CrateNum, ) { let src = &codegen_results.crate_info.used_crate_source[&cnum]; let cratepath = &src.rlib.as_ref().unwrap().0; // See the comment above in `link_staticlib` and `link_rlib` for why if // there's a static library that's not relevant we skip all object // files. let native_libs = &codegen_results.crate_info.native_libraries[&cnum]; let skip_native = native_libs .iter() .any(|lib| lib.kind == NativeLibraryKind::NativeStatic && !relevant_lib(sess, lib)); if (!are_upstream_rust_objects_already_included(sess) || ignored_for_lto(sess, &codegen_results.crate_info, cnum)) && crate_type != config::CrateType::Dylib && !skip_native { cmd.link_rlib(&fix_windows_verbatim_for_gcc(cratepath)); return; } let dst = tmpdir.join(cratepath.file_name().unwrap()); let name = cratepath.file_name().unwrap().to_str().unwrap(); let name = &name[3..name.len() - 5]; // chop off lib/.rlib sess.prof.generic_activity_with_arg("link_altering_rlib", name).run(|| { let mut archive = ::new(sess, &dst, Some(cratepath)); archive.update_symbols(); let mut any_objects = false; for f in archive.src_files() { if f.ends_with(RLIB_BYTECODE_EXTENSION) || f == METADATA_FILENAME { archive.remove_file(&f); continue; } let canonical = f.replace("-", "_"); let canonical_name = name.replace("-", "_"); let is_rust_object = canonical.starts_with(&canonical_name) && looks_like_rust_object_file(&f); // If we've been requested to skip all native object files // (those not generated by the rust compiler) then we can skip // this file. See above for why we may want to do this. let skip_because_cfg_say_so = skip_native && !is_rust_object; // If we're performing LTO and this is a rust-generated object // file, then we don't need the object file as it's part of the // LTO module. Note that `#![no_builtins]` is excluded from LTO, // though, so we let that object file slide. let skip_because_lto = are_upstream_rust_objects_already_included(sess) && is_rust_object && (sess.target.target.options.no_builtins || !codegen_results.crate_info.is_no_builtins.contains(&cnum)); if skip_because_cfg_say_so || skip_because_lto { archive.remove_file(&f); } else { any_objects = true; } } if !any_objects { return; } archive.build(); // If we're creating a dylib, then we need to include the // whole of each object in our archive into that artifact. This is // because a `dylib` can be reused as an intermediate artifact. // // Note, though, that we don't want to include the whole of a // compiler-builtins crate (e.g., compiler-rt) because it'll get // repeatedly linked anyway. if crate_type == config::CrateType::Dylib && codegen_results.crate_info.compiler_builtins != Some(cnum) { cmd.link_whole_rlib(&fix_windows_verbatim_for_gcc(&dst)); } else { cmd.link_rlib(&fix_windows_verbatim_for_gcc(&dst)); } }); } // Same thing as above, but for dynamic crates instead of static crates. fn add_dynamic_crate(cmd: &mut dyn Linker, sess: &Session, cratepath: &Path) { // Just need to tell the linker about where the library lives and // what its name is let parent = cratepath.parent(); if let Some(dir) = parent { cmd.include_path(&fix_windows_verbatim_for_gcc(dir)); } let filestem = cratepath.file_stem().unwrap().to_str().unwrap(); cmd.link_rust_dylib( Symbol::intern(&unlib(&sess.target, filestem)), parent.unwrap_or(Path::new("")), ); } } // Link in all of our upstream crates' native dependencies. Remember that // all of these upstream native dependencies are all non-static // dependencies. We've got two cases then: // // 1. The upstream crate is an rlib. In this case we *must* link in the // native dependency because the rlib is just an archive. // // 2. The upstream crate is a dylib. In order to use the dylib, we have to // have the dependency present on the system somewhere. Thus, we don't // gain a whole lot from not linking in the dynamic dependency to this // crate as well. // // The use case for this is a little subtle. In theory the native // dependencies of a crate are purely an implementation detail of the crate // itself, but the problem arises with generic and inlined functions. If a // generic function calls a native function, then the generic function must // be instantiated in the target crate, meaning that the native symbol must // also be resolved in the target crate. pub fn add_upstream_native_libraries( cmd: &mut dyn Linker, sess: &Session, codegen_results: &CodegenResults, crate_type: config::CrateType, ) { // Be sure to use a topological sorting of crates because there may be // interdependencies between native libraries. When passing -nodefaultlibs, // for example, almost all native libraries depend on libc, so we have to // make sure that's all the way at the right (liblibc is near the base of // the dependency chain). // // This passes RequireStatic, but the actual requirement doesn't matter, // we're just getting an ordering of crate numbers, we're not worried about // the paths. let (_, data) = codegen_results .crate_info .dependency_formats .iter() .find(|(ty, _)| *ty == crate_type) .expect("failed to find crate type in dependency format list"); let crates = &codegen_results.crate_info.used_crates_static; for &(cnum, _) in crates { for lib in codegen_results.crate_info.native_libraries[&cnum].iter() { let name = match lib.name { Some(l) => l, None => continue, }; if !relevant_lib(sess, &lib) { continue; } match lib.kind { NativeLibraryKind::NativeUnknown => cmd.link_dylib(name), NativeLibraryKind::NativeFramework => cmd.link_framework(name), NativeLibraryKind::NativeStaticNobundle => { // Link "static-nobundle" native libs only if the crate they originate from // is being linked statically to the current crate. If it's linked dynamically // or is an rlib already included via some other dylib crate, the symbols from // native libs will have already been included in that dylib. if data[cnum.as_usize() - 1] == Linkage::Static { cmd.link_staticlib(name) } } // ignore statically included native libraries here as we've // already included them when we included the rust library // previously NativeLibraryKind::NativeStatic => {} NativeLibraryKind::NativeRawDylib => { // FIXME(#58713): Proper handling for raw dylibs. bug!("raw_dylib feature not yet implemented"); } } } } } pub fn relevant_lib(sess: &Session, lib: &NativeLibrary) -> bool { match lib.cfg { Some(ref cfg) => rustc_attr::cfg_matches(cfg, &sess.parse_sess, None), None => true, } } pub fn are_upstream_rust_objects_already_included(sess: &Session) -> bool { match sess.lto() { config::Lto::Fat => true, config::Lto::Thin => { // If we defer LTO to the linker, we haven't run LTO ourselves, so // any upstream object files have not been copied yet. !sess.opts.cg.linker_plugin_lto.enabled() } config::Lto::No | config::Lto::ThinLocal => false, } } fn is_pic(sess: &Session) -> bool { let reloc_model_arg = match sess.opts.cg.relocation_model { Some(ref s) => &s[..], None => &sess.target.target.options.relocation_model[..], }; reloc_model_arg == "pic" }