// This implements the dead-code warning pass. It follows middle::reachable // closely. The idea is that all reachable symbols are live, codes called // from live codes are live, and everything else is dead. use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir as hir; use rustc_hir::def::{CtorOf, DefKind, Res}; use rustc_hir::def_id::{DefId, LOCAL_CRATE}; use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor}; use rustc_hir::itemlikevisit::ItemLikeVisitor; use rustc_hir::{Node, PatKind, TyKind}; use rustc_middle::hir::map::Map; use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc_middle::middle::privacy; use rustc_middle::ty::{self, DefIdTree, TyCtxt}; use rustc_session::lint; use rustc_span::symbol::{sym, Symbol}; // Any local node that may call something in its body block should be // explored. For example, if it's a live Node::Item that is a // function, then we should explore its block to check for codes that // may need to be marked as live. fn should_explore(tcx: TyCtxt<'_>, hir_id: hir::HirId) -> bool { matches!( tcx.hir().find(hir_id), Some( Node::Item(..) | Node::ImplItem(..) | Node::ForeignItem(..) | Node::TraitItem(..) | Node::Variant(..) | Node::AnonConst(..) | Node::Pat(..), ) ) } struct MarkSymbolVisitor<'tcx> { worklist: Vec, tcx: TyCtxt<'tcx>, maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>, live_symbols: FxHashSet, repr_has_repr_c: bool, in_pat: bool, inherited_pub_visibility: bool, ignore_variant_stack: Vec, // maps from tuple struct constructors to tuple struct items struct_constructors: FxHashMap, } impl<'tcx> MarkSymbolVisitor<'tcx> { /// Gets the type-checking results for the current body. /// As this will ICE if called outside bodies, only call when working with /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies). #[track_caller] fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> { self.maybe_typeck_results .expect("`MarkSymbolVisitor::typeck_results` called outside of body") } fn check_def_id(&mut self, def_id: DefId) { if let Some(def_id) = def_id.as_local() { let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id); if should_explore(self.tcx, hir_id) || self.struct_constructors.contains_key(&hir_id) { self.worklist.push(hir_id); } self.live_symbols.insert(hir_id); } } fn insert_def_id(&mut self, def_id: DefId) { if let Some(def_id) = def_id.as_local() { let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id); debug_assert!(!should_explore(self.tcx, hir_id)); self.live_symbols.insert(hir_id); } } fn handle_res(&mut self, res: Res) { match res { Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::TyAlias, _) => { self.check_def_id(res.def_id()); } _ if self.in_pat => {} Res::PrimTy(..) | Res::SelfCtor(..) | Res::Local(..) => {} Res::Def(DefKind::Ctor(CtorOf::Variant, ..), ctor_def_id) => { let variant_id = self.tcx.parent(ctor_def_id).unwrap(); let enum_id = self.tcx.parent(variant_id).unwrap(); self.check_def_id(enum_id); if !self.ignore_variant_stack.contains(&ctor_def_id) { self.check_def_id(variant_id); } } Res::Def(DefKind::Variant, variant_id) => { let enum_id = self.tcx.parent(variant_id).unwrap(); self.check_def_id(enum_id); if !self.ignore_variant_stack.contains(&variant_id) { self.check_def_id(variant_id); } } Res::SelfTy(t, i) => { if let Some(t) = t { self.check_def_id(t); } if let Some((i, _)) = i { self.check_def_id(i); } } Res::ToolMod | Res::NonMacroAttr(..) | Res::Err => {} _ => { self.check_def_id(res.def_id()); } } } fn lookup_and_handle_method(&mut self, id: hir::HirId) { if let Some(def_id) = self.typeck_results().type_dependent_def_id(id) { self.check_def_id(def_id); } else { bug!("no type-dependent def for method"); } } fn handle_field_access(&mut self, lhs: &hir::Expr<'_>, hir_id: hir::HirId) { match self.typeck_results().expr_ty_adjusted(lhs).kind() { ty::Adt(def, _) => { let index = self.tcx.field_index(hir_id, self.typeck_results()); self.insert_def_id(def.non_enum_variant().fields[index].did); } ty::Tuple(..) => {} _ => span_bug!(lhs.span, "named field access on non-ADT"), } } fn handle_field_pattern_match( &mut self, lhs: &hir::Pat<'_>, res: Res, pats: &[hir::PatField<'_>], ) { let variant = match self.typeck_results().node_type(lhs.hir_id).kind() { ty::Adt(adt, _) => adt.variant_of_res(res), _ => span_bug!(lhs.span, "non-ADT in struct pattern"), }; for pat in pats { if let PatKind::Wild = pat.pat.kind { continue; } let index = self.tcx.field_index(pat.hir_id, self.typeck_results()); self.insert_def_id(variant.fields[index].did); } } fn mark_live_symbols(&mut self) { let mut scanned = FxHashSet::default(); while let Some(id) = self.worklist.pop() { if !scanned.insert(id) { continue; } // in the case of tuple struct constructors we want to check the item, not the generated // tuple struct constructor function let id = self.struct_constructors.get(&id).cloned().unwrap_or(id); if let Some(node) = self.tcx.hir().find(id) { self.live_symbols.insert(id); self.visit_node(node); } } } fn visit_node(&mut self, node: Node<'tcx>) { let had_repr_c = self.repr_has_repr_c; self.repr_has_repr_c = false; let had_inherited_pub_visibility = self.inherited_pub_visibility; self.inherited_pub_visibility = false; match node { Node::Item(item) => match item.kind { hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => { let def = self.tcx.adt_def(item.def_id); self.repr_has_repr_c = def.repr.c(); intravisit::walk_item(self, &item); } hir::ItemKind::Enum(..) => { self.inherited_pub_visibility = item.vis.node.is_pub(); intravisit::walk_item(self, &item); } hir::ItemKind::ForeignMod { .. } => {} _ => { intravisit::walk_item(self, &item); } }, Node::TraitItem(trait_item) => { intravisit::walk_trait_item(self, trait_item); } Node::ImplItem(impl_item) => { intravisit::walk_impl_item(self, impl_item); } Node::ForeignItem(foreign_item) => { intravisit::walk_foreign_item(self, &foreign_item); } _ => {} } self.repr_has_repr_c = had_repr_c; self.inherited_pub_visibility = had_inherited_pub_visibility; } fn mark_as_used_if_union(&mut self, adt: &ty::AdtDef, fields: &[hir::ExprField<'_>]) { if adt.is_union() && adt.non_enum_variant().fields.len() > 1 && adt.did.is_local() { for field in fields { let index = self.tcx.field_index(field.hir_id, self.typeck_results()); self.insert_def_id(adt.non_enum_variant().fields[index].did); } } } } impl<'tcx> Visitor<'tcx> for MarkSymbolVisitor<'tcx> { type Map = intravisit::ErasedMap<'tcx>; fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap { NestedVisitorMap::None } fn visit_nested_body(&mut self, body: hir::BodyId) { let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.tcx.typeck_body(body)); let body = self.tcx.hir().body(body); self.visit_body(body); self.maybe_typeck_results = old_maybe_typeck_results; } fn visit_variant_data( &mut self, def: &'tcx hir::VariantData<'tcx>, _: Symbol, _: &hir::Generics<'_>, _: hir::HirId, _: rustc_span::Span, ) { let has_repr_c = self.repr_has_repr_c; let inherited_pub_visibility = self.inherited_pub_visibility; let live_fields = def .fields() .iter() .filter(|f| has_repr_c || inherited_pub_visibility || f.vis.node.is_pub()); self.live_symbols.extend(live_fields.map(|f| f.hir_id)); intravisit::walk_struct_def(self, def); } fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { match expr.kind { hir::ExprKind::Path(ref qpath @ hir::QPath::TypeRelative(..)) => { let res = self.typeck_results().qpath_res(qpath, expr.hir_id); self.handle_res(res); } hir::ExprKind::MethodCall(..) => { self.lookup_and_handle_method(expr.hir_id); } hir::ExprKind::Field(ref lhs, ..) => { self.handle_field_access(&lhs, expr.hir_id); } hir::ExprKind::Struct(ref qpath, ref fields, _) => { let res = self.typeck_results().qpath_res(qpath, expr.hir_id); self.handle_res(res); if let ty::Adt(ref adt, _) = self.typeck_results().expr_ty(expr).kind() { self.mark_as_used_if_union(adt, fields); } } _ => (), } intravisit::walk_expr(self, expr); } fn visit_arm(&mut self, arm: &'tcx hir::Arm<'tcx>) { // Inside the body, ignore constructions of variants // necessary for the pattern to match. Those construction sites // can't be reached unless the variant is constructed elsewhere. let len = self.ignore_variant_stack.len(); self.ignore_variant_stack.extend(arm.pat.necessary_variants()); intravisit::walk_arm(self, arm); self.ignore_variant_stack.truncate(len); } fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) { self.in_pat = true; match pat.kind { PatKind::Struct(ref path, ref fields, _) => { let res = self.typeck_results().qpath_res(path, pat.hir_id); self.handle_field_pattern_match(pat, res, fields); } PatKind::Path(ref qpath) => { let res = self.typeck_results().qpath_res(qpath, pat.hir_id); self.handle_res(res); } _ => (), } intravisit::walk_pat(self, pat); self.in_pat = false; } fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _: hir::HirId) { self.handle_res(path.res); intravisit::walk_path(self, path); } fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) { if let TyKind::OpaqueDef(item_id, _) = ty.kind { let item = self.tcx.hir().item(item_id); intravisit::walk_item(self, item); } intravisit::walk_ty(self, ty); } fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) { self.live_symbols.insert(c.hir_id); intravisit::walk_anon_const(self, c); } } fn has_allow_dead_code_or_lang_attr(tcx: TyCtxt<'_>, id: hir::HirId) -> bool { let attrs = tcx.hir().attrs(id); if tcx.sess.contains_name(attrs, sym::lang) { return true; } // Stable attribute for #[lang = "panic_impl"] if tcx.sess.contains_name(attrs, sym::panic_handler) { return true; } // (To be) stable attribute for #[lang = "oom"] if tcx.sess.contains_name(attrs, sym::alloc_error_handler) { return true; } let def_id = tcx.hir().local_def_id(id); let cg_attrs = tcx.codegen_fn_attrs(def_id); // #[used], #[no_mangle], #[export_name], etc also keeps the item alive // forcefully, e.g., for placing it in a specific section. if cg_attrs.contains_extern_indicator() || cg_attrs.flags.contains(CodegenFnAttrFlags::USED) { return true; } tcx.lint_level_at_node(lint::builtin::DEAD_CODE, id).0 == lint::Allow } // This visitor seeds items that // 1) We want to explicitly consider as live: // * Item annotated with #[allow(dead_code)] // - This is done so that if we want to suppress warnings for a // group of dead functions, we only have to annotate the "root". // For example, if both `f` and `g` are dead and `f` calls `g`, // then annotating `f` with `#[allow(dead_code)]` will suppress // warning for both `f` and `g`. // * Item annotated with #[lang=".."] // - This is because lang items are always callable from elsewhere. // or // 2) We are not sure to be live or not // * Implementations of traits and trait methods struct LifeSeeder<'k, 'tcx> { worklist: Vec, krate: &'k hir::Crate<'k>, tcx: TyCtxt<'tcx>, // see `MarkSymbolVisitor::struct_constructors` struct_constructors: FxHashMap, } impl<'v, 'k, 'tcx> ItemLikeVisitor<'v> for LifeSeeder<'k, 'tcx> { fn visit_item(&mut self, item: &hir::Item<'_>) { let allow_dead_code = has_allow_dead_code_or_lang_attr(self.tcx, item.hir_id()); if allow_dead_code { self.worklist.push(item.hir_id()); } match item.kind { hir::ItemKind::Enum(ref enum_def, _) => { if allow_dead_code { self.worklist.extend(enum_def.variants.iter().map(|variant| variant.id)); } for variant in enum_def.variants { if let Some(ctor_hir_id) = variant.data.ctor_hir_id() { self.struct_constructors.insert(ctor_hir_id, variant.id); } } } hir::ItemKind::Impl(hir::Impl { ref of_trait, items, .. }) => { if of_trait.is_some() { self.worklist.push(item.hir_id()); } for impl_item_ref in items { let impl_item = self.krate.impl_item(impl_item_ref.id); if of_trait.is_some() || has_allow_dead_code_or_lang_attr(self.tcx, impl_item.hir_id()) { self.worklist.push(impl_item_ref.id.hir_id()); } } } hir::ItemKind::Struct(ref variant_data, _) => { if let Some(ctor_hir_id) = variant_data.ctor_hir_id() { self.struct_constructors.insert(ctor_hir_id, item.hir_id()); } } _ => (), } } fn visit_trait_item(&mut self, trait_item: &hir::TraitItem<'_>) { use hir::TraitItemKind::{Const, Fn}; if matches!(trait_item.kind, Const(_, Some(_)) | Fn(_, hir::TraitFn::Provided(_))) && has_allow_dead_code_or_lang_attr(self.tcx, trait_item.hir_id()) { self.worklist.push(trait_item.hir_id()); } } fn visit_impl_item(&mut self, _item: &hir::ImplItem<'_>) { // ignore: we are handling this in `visit_item` above } fn visit_foreign_item(&mut self, foreign_item: &hir::ForeignItem<'_>) { use hir::ForeignItemKind::{Fn, Static}; if matches!(foreign_item.kind, Static(..) | Fn(..)) && has_allow_dead_code_or_lang_attr(self.tcx, foreign_item.hir_id()) { self.worklist.push(foreign_item.hir_id()); } } } fn create_and_seed_worklist<'tcx>( tcx: TyCtxt<'tcx>, access_levels: &privacy::AccessLevels, krate: &hir::Crate<'_>, ) -> (Vec, FxHashMap) { let worklist = access_levels .map .iter() .filter_map( |(&id, &level)| { if level >= privacy::AccessLevel::Reachable { Some(id) } else { None } }, ) .chain( // Seed entry point tcx.entry_fn(LOCAL_CRATE).map(|(def_id, _)| tcx.hir().local_def_id_to_hir_id(def_id)), ) .collect::>(); // Seed implemented trait items let mut life_seeder = LifeSeeder { worklist, krate, tcx, struct_constructors: Default::default() }; krate.visit_all_item_likes(&mut life_seeder); (life_seeder.worklist, life_seeder.struct_constructors) } fn find_live<'tcx>( tcx: TyCtxt<'tcx>, access_levels: &privacy::AccessLevels, krate: &hir::Crate<'_>, ) -> FxHashSet { let (worklist, struct_constructors) = create_and_seed_worklist(tcx, access_levels, krate); let mut symbol_visitor = MarkSymbolVisitor { worklist, tcx, maybe_typeck_results: None, live_symbols: Default::default(), repr_has_repr_c: false, in_pat: false, inherited_pub_visibility: false, ignore_variant_stack: vec![], struct_constructors, }; symbol_visitor.mark_live_symbols(); symbol_visitor.live_symbols } struct DeadVisitor<'tcx> { tcx: TyCtxt<'tcx>, live_symbols: FxHashSet, } impl DeadVisitor<'tcx> { fn should_warn_about_item(&mut self, item: &hir::Item<'_>) -> bool { let should_warn = matches!( item.kind, hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) ); should_warn && !self.symbol_is_live(item.hir_id()) } fn should_warn_about_field(&mut self, field: &hir::FieldDef<'_>) -> bool { let field_type = self.tcx.type_of(self.tcx.hir().local_def_id(field.hir_id)); !field.is_positional() && !self.symbol_is_live(field.hir_id) && !field_type.is_phantom_data() && !has_allow_dead_code_or_lang_attr(self.tcx, field.hir_id) } fn should_warn_about_variant(&mut self, variant: &hir::Variant<'_>) -> bool { !self.symbol_is_live(variant.id) && !has_allow_dead_code_or_lang_attr(self.tcx, variant.id) } fn should_warn_about_foreign_item(&mut self, fi: &hir::ForeignItem<'_>) -> bool { !self.symbol_is_live(fi.hir_id()) && !has_allow_dead_code_or_lang_attr(self.tcx, fi.hir_id()) } // id := HIR id of an item's definition. fn symbol_is_live(&mut self, id: hir::HirId) -> bool { if self.live_symbols.contains(&id) { return true; } // If it's a type whose items are live, then it's live, too. // This is done to handle the case where, for example, the static // method of a private type is used, but the type itself is never // called directly. let def_id = self.tcx.hir().local_def_id(id); let inherent_impls = self.tcx.inherent_impls(def_id); for &impl_did in inherent_impls.iter() { for item_did in self.tcx.associated_item_def_ids(impl_did) { if let Some(did) = item_did.as_local() { let item_hir_id = self.tcx.hir().local_def_id_to_hir_id(did); if self.live_symbols.contains(&item_hir_id) { return true; } } } } false } fn warn_dead_code( &mut self, id: hir::HirId, span: rustc_span::Span, name: Symbol, participle: &str, ) { if !name.as_str().starts_with('_') { self.tcx.struct_span_lint_hir(lint::builtin::DEAD_CODE, id, span, |lint| { let def_id = self.tcx.hir().local_def_id(id); let descr = self.tcx.def_kind(def_id).descr(def_id.to_def_id()); lint.build(&format!("{} is never {}: `{}`", descr, participle, name)).emit() }); } } } impl Visitor<'tcx> for DeadVisitor<'tcx> { type Map = Map<'tcx>; /// Walk nested items in place so that we don't report dead-code /// on inner functions when the outer function is already getting /// an error. We could do this also by checking the parents, but /// this is how the code is setup and it seems harmless enough. fn nested_visit_map(&mut self) -> NestedVisitorMap { NestedVisitorMap::All(self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { if self.should_warn_about_item(item) { // For most items, we want to highlight its identifier let span = match item.kind { hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Trait(..) | hir::ItemKind::Impl { .. } => { // FIXME(66095): Because item.span is annotated with things // like expansion data, and ident.span isn't, we use the // def_span method if it's part of a macro invocation // (and thus has a source_callee set). // We should probably annotate ident.span with the macro // context, but that's a larger change. if item.span.source_callee().is_some() { self.tcx.sess.source_map().guess_head_span(item.span) } else { item.ident.span } } _ => item.span, }; let participle = match item.kind { hir::ItemKind::Struct(..) => "constructed", // Issue #52325 _ => "used", }; self.warn_dead_code(item.hir_id(), span, item.ident.name, participle); } else { // Only continue if we didn't warn intravisit::walk_item(self, item); } } fn visit_variant( &mut self, variant: &'tcx hir::Variant<'tcx>, g: &'tcx hir::Generics<'tcx>, id: hir::HirId, ) { if self.should_warn_about_variant(&variant) { self.warn_dead_code(variant.id, variant.span, variant.ident.name, "constructed"); } else { intravisit::walk_variant(self, variant, g, id); } } fn visit_foreign_item(&mut self, fi: &'tcx hir::ForeignItem<'tcx>) { if self.should_warn_about_foreign_item(fi) { self.warn_dead_code(fi.hir_id(), fi.span, fi.ident.name, "used"); } intravisit::walk_foreign_item(self, fi); } fn visit_field_def(&mut self, field: &'tcx hir::FieldDef<'tcx>) { if self.should_warn_about_field(&field) { self.warn_dead_code(field.hir_id, field.span, field.ident.name, "read"); } intravisit::walk_field_def(self, field); } fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) { match impl_item.kind { hir::ImplItemKind::Const(_, body_id) => { if !self.symbol_is_live(impl_item.hir_id()) { self.warn_dead_code( impl_item.hir_id(), impl_item.span, impl_item.ident.name, "used", ); } self.visit_nested_body(body_id) } hir::ImplItemKind::Fn(_, body_id) => { if !self.symbol_is_live(impl_item.hir_id()) { // FIXME(66095): Because impl_item.span is annotated with things // like expansion data, and ident.span isn't, we use the // def_span method if it's part of a macro invocation // (and thus has a source_callee set). // We should probably annotate ident.span with the macro // context, but that's a larger change. let span = if impl_item.span.source_callee().is_some() { self.tcx.sess.source_map().guess_head_span(impl_item.span) } else { impl_item.ident.span }; self.warn_dead_code(impl_item.hir_id(), span, impl_item.ident.name, "used"); } self.visit_nested_body(body_id) } hir::ImplItemKind::TyAlias(..) => {} } } // Overwrite so that we don't warn the trait item itself. fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) { match trait_item.kind { hir::TraitItemKind::Const(_, Some(body_id)) | hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(body_id)) => { self.visit_nested_body(body_id) } hir::TraitItemKind::Const(_, None) | hir::TraitItemKind::Fn(_, hir::TraitFn::Required(_)) | hir::TraitItemKind::Type(..) => {} } } } pub fn check_crate(tcx: TyCtxt<'_>) { let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE); let krate = tcx.hir().krate(); let live_symbols = find_live(tcx, access_levels, krate); let mut visitor = DeadVisitor { tcx, live_symbols }; intravisit::walk_crate(&mut visitor, krate); }