//! Implementation of compiling various phases of the compiler and standard //! library. //! //! This module contains some of the real meat in the rustbuild build system //! which is where Cargo is used to compiler the standard library, libtest, and //! compiler. This module is also responsible for assembling the sysroot as it //! goes along from the output of the previous stage. use std::borrow::Cow; use std::env; use std::fs; use std::io::BufReader; use std::io::prelude::*; use std::path::{Path, PathBuf}; use std::process::{Command, Stdio, exit}; use std::str; use build_helper::{output, t, up_to_date}; use filetime::FileTime; use serde::Deserialize; use serde_json; use crate::dist; use crate::builder::Cargo; use crate::util::{exe, is_dylib}; use crate::{Compiler, Mode, GitRepo}; use crate::native; use crate::cache::{INTERNER, Interned}; use crate::builder::{Step, RunConfig, ShouldRun, Builder, Kind}; #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)] pub struct Std { pub target: Interned, pub compiler: Compiler, } impl Step for Std { type Output = (); const DEFAULT: bool = true; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.all_krates("test") } fn make_run(run: RunConfig<'_>) { run.builder.ensure(Std { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Builds the standard library. /// /// This will build the standard library for a particular stage of the build /// using the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder<'_>) { let target = self.target; let compiler = self.compiler; if builder.config.keep_stage.contains(&compiler.stage) { builder.info("Warning: Using a potentially old libstd. This may not behave well."); builder.ensure(StdLink { compiler, target_compiler: compiler, target, }); return; } let mut target_deps = builder.ensure(StartupObjects { compiler, target }); let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target); if compiler_to_use != compiler { builder.ensure(Std { compiler: compiler_to_use, target, }); builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target)); // Even if we're not building std this stage, the new sysroot must // still contain the third party objects needed by various targets. copy_third_party_objects(builder, &compiler, target); builder.ensure(StdLink { compiler: compiler_to_use, target_compiler: compiler, target, }); return; } target_deps.extend(copy_third_party_objects(builder, &compiler, target).into_iter()); let mut cargo = builder.cargo(compiler, Mode::Std, target, "build"); std_cargo(builder, &compiler, target, &mut cargo); builder.info(&format!("Building stage{} std artifacts ({} -> {})", compiler.stage, &compiler.host, target)); run_cargo(builder, cargo, vec![], &libstd_stamp(builder, compiler, target), target_deps, false); builder.ensure(StdLink { compiler: builder.compiler(compiler.stage, builder.config.build), target_compiler: compiler, target, }); } } /// Copies third party objects needed by various targets. fn copy_third_party_objects(builder: &Builder<'_>, compiler: &Compiler, target: Interned) -> Vec { let libdir = builder.sysroot_libdir(*compiler, target); let mut target_deps = vec![]; let mut copy_and_stamp = |sourcedir: &Path, name: &str| { let target = libdir.join(name); builder.copy( &sourcedir.join(name), &target, ); target_deps.push(target); }; // Copies the crt(1,i,n).o startup objects // // Since musl supports fully static linking, we can cross link for it even // with a glibc-targeting toolchain, given we have the appropriate startup // files. As those shipped with glibc won't work, copy the ones provided by // musl so we have them on linux-gnu hosts. if target.contains("musl") { let srcdir = builder.musl_root(target).unwrap().join("lib"); for &obj in &["crt1.o", "crti.o", "crtn.o"] { copy_and_stamp(&srcdir, obj); } } else if target.ends_with("-wasi") { let srcdir = builder.wasi_root(target).unwrap().join("lib/wasm32-wasi"); copy_and_stamp(&srcdir, "crt1.o"); } // Copies libunwind.a compiled to be linked wit x86_64-fortanix-unknown-sgx. // // This target needs to be linked to Fortanix's port of llvm's libunwind. // libunwind requires support for rwlock and printing to stderr, // which is provided by std for this target. if target == "x86_64-fortanix-unknown-sgx" { let src_path_env = "X86_FORTANIX_SGX_LIBS"; let src = env::var(src_path_env).expect(&format!("{} not found in env", src_path_env)); copy_and_stamp(Path::new(&src), "libunwind.a"); } target_deps } /// Configure cargo to compile the standard library, adding appropriate env vars /// and such. pub fn std_cargo(builder: &Builder<'_>, compiler: &Compiler, target: Interned, cargo: &mut Cargo) { if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") { cargo.env("MACOSX_DEPLOYMENT_TARGET", target); } // Determine if we're going to compile in optimized C intrinsics to // the `compiler-builtins` crate. These intrinsics live in LLVM's // `compiler-rt` repository, but our `src/llvm-project` submodule isn't // always checked out, so we need to conditionally look for this. (e.g. if // an external LLVM is used we skip the LLVM submodule checkout). // // Note that this shouldn't affect the correctness of `compiler-builtins`, // but only its speed. Some intrinsics in C haven't been translated to Rust // yet but that's pretty rare. Other intrinsics have optimized // implementations in C which have only had slower versions ported to Rust, // so we favor the C version where we can, but it's not critical. // // If `compiler-rt` is available ensure that the `c` feature of the // `compiler-builtins` crate is enabled and it's configured to learn where // `compiler-rt` is located. let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt"); let compiler_builtins_c_feature = if compiler_builtins_root.exists() { cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root); " compiler-builtins-c".to_string() } else { String::new() }; if builder.no_std(target) == Some(true) { let mut features = "compiler-builtins-mem".to_string(); features.push_str(&compiler_builtins_c_feature); // for no-std targets we only compile a few no_std crates cargo .args(&["-p", "alloc"]) .arg("--manifest-path") .arg(builder.src.join("src/liballoc/Cargo.toml")) .arg("--features") .arg("compiler-builtins-mem compiler-builtins-c"); } else { let mut features = builder.std_features(); features.push_str(&compiler_builtins_c_feature); if compiler.stage != 0 && builder.config.sanitizers { // This variable is used by the sanitizer runtime crates, e.g. // rustc_lsan, to build the sanitizer runtime from C code // When this variable is missing, those crates won't compile the C code, // so we don't set this variable during stage0 where llvm-config is // missing // We also only build the runtimes when --enable-sanitizers (or its // config.toml equivalent) is used let llvm_config = builder.ensure(native::Llvm { target: builder.config.build, }); cargo.env("LLVM_CONFIG", llvm_config); cargo.env("RUSTC_BUILD_SANITIZERS", "1"); } cargo.arg("--features").arg(features) .arg("--manifest-path") .arg(builder.src.join("src/libtest/Cargo.toml")); // Help the libc crate compile by assisting it in finding various // sysroot native libraries. if target.contains("musl") { if let Some(p) = builder.musl_root(target) { let root = format!("native={}/lib", p.to_str().unwrap()); cargo.rustflag("-L").rustflag(&root); } } if target.ends_with("-wasi") { if let Some(p) = builder.wasi_root(target) { let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap()); cargo.rustflag("-L").rustflag(&root); } } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct StdLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: Interned, } impl Step for StdLink { type Output = (); fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Link all libstd rlibs/dylibs into the sysroot location. /// /// Links those artifacts generated by `compiler` to the `stage` compiler's /// sysroot for the specified `host` and `target`. /// /// Note that this assumes that `compiler` has already generated the libstd /// libraries for `target`, and this method will find them in the relevant /// output directory. fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; builder.info(&format!("Copying stage{} std from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target)); let libdir = builder.sysroot_libdir(target_compiler, target); let hostdir = builder.sysroot_libdir(target_compiler, compiler.host); add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target)); if builder.config.sanitizers && compiler.stage != 0 && target == "x86_64-apple-darwin" { // The sanitizers are only built in stage1 or above, so the dylibs will // be missing in stage0 and causes panic. See the `std()` function above // for reason why the sanitizers are not built in stage0. copy_apple_sanitizer_dylibs(builder, &builder.native_dir(target), "osx", &libdir); } } } fn copy_apple_sanitizer_dylibs( builder: &Builder<'_>, native_dir: &Path, platform: &str, into: &Path, ) { for &sanitizer in &["asan", "tsan"] { let filename = format!("lib__rustc__clang_rt.{}_{}_dynamic.dylib", sanitizer, platform); let mut src_path = native_dir.join(sanitizer); src_path.push("build"); src_path.push("lib"); src_path.push("darwin"); src_path.push(&filename); builder.copy(&src_path, &into.join(filename)); } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct StartupObjects { pub compiler: Compiler, pub target: Interned, } impl Step for StartupObjects { type Output = Vec; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.path("src/rtstartup") } fn make_run(run: RunConfig<'_>) { run.builder.ensure(StartupObjects { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Builds and prepare startup objects like rsbegin.o and rsend.o /// /// These are primarily used on Windows right now for linking executables/dlls. /// They don't require any library support as they're just plain old object /// files, so we just use the nightly snapshot compiler to always build them (as /// no other compilers are guaranteed to be available). fn run(self, builder: &Builder<'_>) -> Vec { let for_compiler = self.compiler; let target = self.target; if !target.contains("windows-gnu") { return vec![] } let mut target_deps = vec![]; let src_dir = &builder.src.join("src/rtstartup"); let dst_dir = &builder.native_dir(target).join("rtstartup"); let sysroot_dir = &builder.sysroot_libdir(for_compiler, target); t!(fs::create_dir_all(dst_dir)); for file in &["rsbegin", "rsend"] { let src_file = &src_dir.join(file.to_string() + ".rs"); let dst_file = &dst_dir.join(file.to_string() + ".o"); if !up_to_date(src_file, dst_file) { let mut cmd = Command::new(&builder.initial_rustc); builder.run(cmd.env("RUSTC_BOOTSTRAP", "1") .arg("--cfg").arg("bootstrap") .arg("--target").arg(target) .arg("--emit=obj") .arg("-o").arg(dst_file) .arg(src_file)); } let target = sysroot_dir.join(file.to_string() + ".o"); builder.copy(dst_file, &target); target_deps.push(target); } for obj in ["crt2.o", "dllcrt2.o"].iter() { let src = compiler_file(builder, builder.cc(target), target, obj); let target = sysroot_dir.join(obj); builder.copy(&src, &target); target_deps.push(target); } target_deps } } #[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)] pub struct Rustc { pub target: Interned, pub compiler: Compiler, } impl Step for Rustc { type Output = (); const ONLY_HOSTS: bool = true; const DEFAULT: bool = true; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.all_krates("rustc-main") } fn make_run(run: RunConfig<'_>) { run.builder.ensure(Rustc { compiler: run.builder.compiler(run.builder.top_stage, run.host), target: run.target, }); } /// Builds the compiler. /// /// This will build the compiler for a particular stage of the build using /// the `compiler` targeting the `target` architecture. The artifacts /// created will also be linked into the sysroot directory. fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target = self.target; builder.ensure(Std { compiler, target }); if builder.config.keep_stage.contains(&compiler.stage) { builder.info("Warning: Using a potentially old librustc. This may not behave well."); builder.ensure(RustcLink { compiler, target_compiler: compiler, target, }); return; } let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target); if compiler_to_use != compiler { builder.ensure(Rustc { compiler: compiler_to_use, target, }); builder.info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target)); builder.ensure(RustcLink { compiler: compiler_to_use, target_compiler: compiler, target, }); return; } // Ensure that build scripts and proc macros have a std / libproc_macro to link against. builder.ensure(Std { compiler: builder.compiler(self.compiler.stage, builder.config.build), target: builder.config.build, }); let mut cargo = builder.cargo(compiler, Mode::Rustc, target, "build"); rustc_cargo(builder, &mut cargo, target); builder.info(&format!("Building stage{} compiler artifacts ({} -> {})", compiler.stage, &compiler.host, target)); run_cargo(builder, cargo, vec![], &librustc_stamp(builder, compiler, target), vec![], false); builder.ensure(RustcLink { compiler: builder.compiler(compiler.stage, builder.config.build), target_compiler: compiler, target, }); } } pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned) { cargo.arg("--features").arg(builder.rustc_features()) .arg("--manifest-path") .arg(builder.src.join("src/rustc/Cargo.toml")); rustc_cargo_env(builder, cargo, target); } pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned) { // Set some configuration variables picked up by build scripts and // the compiler alike cargo.env("CFG_RELEASE", builder.rust_release()) .env("CFG_RELEASE_CHANNEL", &builder.config.channel) .env("CFG_VERSION", builder.rust_version()) .env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default()); let libdir_relative = builder.config.libdir_relative().unwrap_or(Path::new("lib")); cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative); if let Some(ref ver_date) = builder.rust_info.commit_date() { cargo.env("CFG_VER_DATE", ver_date); } if let Some(ref ver_hash) = builder.rust_info.sha() { cargo.env("CFG_VER_HASH", ver_hash); } if !builder.unstable_features() { cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1"); } if let Some(ref s) = builder.config.rustc_default_linker { cargo.env("CFG_DEFAULT_LINKER", s); } if builder.config.rustc_parallel { cargo.rustflag("--cfg=parallel_compiler"); } if builder.config.rust_verify_llvm_ir { cargo.env("RUSTC_VERIFY_LLVM_IR", "1"); } // Pass down configuration from the LLVM build into the build of // librustc_llvm and librustc_codegen_llvm. // // Note that this is disabled if LLVM itself is disabled or we're in a check // build, where if we're in a check build there's no need to build all of // LLVM and such. if builder.config.llvm_enabled() && builder.kind != Kind::Check { if builder.is_rust_llvm(target) { cargo.env("LLVM_RUSTLLVM", "1"); } let llvm_config = builder.ensure(native::Llvm { target }); cargo.env("LLVM_CONFIG", &llvm_config); let target_config = builder.config.target_config.get(&target); if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) { cargo.env("CFG_LLVM_ROOT", s); } // Some LLVM linker flags (-L and -l) may be needed to link librustc_llvm. if let Some(ref s) = builder.config.llvm_ldflags { cargo.env("LLVM_LINKER_FLAGS", s); } // Building with a static libstdc++ is only supported on linux right now, // not for MSVC or macOS if builder.config.llvm_static_stdcpp && !target.contains("freebsd") && !target.contains("windows") && !target.contains("apple") { let file = compiler_file(builder, builder.cxx(target).unwrap(), target, "libstdc++.a"); cargo.env("LLVM_STATIC_STDCPP", file); } if builder.config.llvm_link_shared || builder.config.llvm_thin_lto { cargo.env("LLVM_LINK_SHARED", "1"); } if builder.config.llvm_use_libcxx { cargo.env("LLVM_USE_LIBCXX", "1"); } if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo { cargo.env("LLVM_NDEBUG", "1"); } } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] struct RustcLink { pub compiler: Compiler, pub target_compiler: Compiler, pub target: Interned, } impl Step for RustcLink { type Output = (); fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Same as `std_link`, only for librustc fn run(self, builder: &Builder<'_>) { let compiler = self.compiler; let target_compiler = self.target_compiler; let target = self.target; builder.info(&format!("Copying stage{} rustc from stage{} ({} -> {} / {})", target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target)); add_to_sysroot( builder, &builder.sysroot_libdir(target_compiler, target), &builder.sysroot_libdir(target_compiler, compiler.host), &librustc_stamp(builder, compiler, target) ); } } fn copy_lld_to_sysroot(builder: &Builder<'_>, target_compiler: Compiler, lld_install_root: &Path) { let target = target_compiler.host; let dst = builder.sysroot_libdir(target_compiler, target) .parent() .unwrap() .join("bin"); t!(fs::create_dir_all(&dst)); let src_exe = exe("lld", &target); let dst_exe = exe("rust-lld", &target); // we prepend this bin directory to the user PATH when linking Rust binaries. To // avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`. builder.copy(&lld_install_root.join("bin").join(&src_exe), &dst.join(&dst_exe)); } /// Cargo's output path for the standard library in a given stage, compiled /// by a particular compiler for the specified target. pub fn libstd_stamp( builder: &Builder<'_>, compiler: Compiler, target: Interned, ) -> PathBuf { builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp") } /// Cargo's output path for librustc in a given stage, compiled by a particular /// compiler for the specified target. pub fn librustc_stamp( builder: &Builder<'_>, compiler: Compiler, target: Interned, ) -> PathBuf { builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp") } pub fn compiler_file( builder: &Builder<'_>, compiler: &Path, target: Interned, file: &str, ) -> PathBuf { let mut cmd = Command::new(compiler); cmd.args(builder.cflags(target, GitRepo::Rustc)); cmd.arg(format!("-print-file-name={}", file)); let out = output(&mut cmd); PathBuf::from(out.trim()) } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Sysroot { pub compiler: Compiler, } impl Step for Sysroot { type Output = Interned; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Returns the sysroot for the `compiler` specified that *this build system /// generates*. /// /// That is, the sysroot for the stage0 compiler is not what the compiler /// thinks it is by default, but it's the same as the default for stages /// 1-3. fn run(self, builder: &Builder<'_>) -> Interned { let compiler = self.compiler; let sysroot = if compiler.stage == 0 { builder.out.join(&compiler.host).join("stage0-sysroot") } else { builder.out.join(&compiler.host).join(format!("stage{}", compiler.stage)) }; let _ = fs::remove_dir_all(&sysroot); t!(fs::create_dir_all(&sysroot)); INTERNER.intern_path(sysroot) } } #[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)] pub struct Assemble { /// The compiler which we will produce in this step. Assemble itself will /// take care of ensuring that the necessary prerequisites to do so exist, /// that is, this target can be a stage2 compiler and Assemble will build /// previous stages for you. pub target_compiler: Compiler, } impl Step for Assemble { type Output = Compiler; fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> { run.never() } /// Prepare a new compiler from the artifacts in `stage` /// /// This will assemble a compiler in `build/$host/stage$stage`. The compiler /// must have been previously produced by the `stage - 1` builder.build /// compiler. fn run(self, builder: &Builder<'_>) -> Compiler { let target_compiler = self.target_compiler; if target_compiler.stage == 0 { assert_eq!(builder.config.build, target_compiler.host, "Cannot obtain compiler for non-native build triple at stage 0"); // The stage 0 compiler for the build triple is always pre-built. return target_compiler; } // Get the compiler that we'll use to bootstrap ourselves. // // Note that this is where the recursive nature of the bootstrap // happens, as this will request the previous stage's compiler on // downwards to stage 0. // // Also note that we're building a compiler for the host platform. We // only assume that we can run `build` artifacts, which means that to // produce some other architecture compiler we need to start from // `build` to get there. // // FIXME: Perhaps we should download those libraries? // It would make builds faster... // // FIXME: It may be faster if we build just a stage 1 compiler and then // use that to bootstrap this compiler forward. let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build); // Build the libraries for this compiler to link to (i.e., the libraries // it uses at runtime). NOTE: Crates the target compiler compiles don't // link to these. (FIXME: Is that correct? It seems to be correct most // of the time but I think we do link to these for stage2/bin compilers // when not performing a full bootstrap). builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host, }); let lld_install = if builder.config.lld_enabled { Some(builder.ensure(native::Lld { target: target_compiler.host, })) } else { None }; let stage = target_compiler.stage; let host = target_compiler.host; builder.info(&format!("Assembling stage{} compiler ({})", stage, host)); // Link in all dylibs to the libdir let sysroot = builder.sysroot(target_compiler); let rustc_libdir = builder.rustc_libdir(target_compiler); t!(fs::create_dir_all(&rustc_libdir)); let src_libdir = builder.sysroot_libdir(build_compiler, host); for f in builder.read_dir(&src_libdir) { let filename = f.file_name().into_string().unwrap(); if is_dylib(&filename) { builder.copy(&f.path(), &rustc_libdir.join(&filename)); } } if let Some(lld_install) = lld_install { copy_lld_to_sysroot(builder, target_compiler, &lld_install); } dist::maybe_install_llvm_dylib(builder, target_compiler.host, &sysroot); // Link the compiler binary itself into place let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host); let rustc = out_dir.join(exe("rustc_binary", &*host)); let bindir = sysroot.join("bin"); t!(fs::create_dir_all(&bindir)); let compiler = builder.rustc(target_compiler); let _ = fs::remove_file(&compiler); builder.copy(&rustc, &compiler); target_compiler } } /// Link some files into a rustc sysroot. /// /// For a particular stage this will link the file listed in `stamp` into the /// `sysroot_dst` provided. pub fn add_to_sysroot( builder: &Builder<'_>, sysroot_dst: &Path, sysroot_host_dst: &Path, stamp: &Path ) { t!(fs::create_dir_all(&sysroot_dst)); t!(fs::create_dir_all(&sysroot_host_dst)); for (path, host) in builder.read_stamp_file(stamp) { if host { builder.copy(&path, &sysroot_host_dst.join(path.file_name().unwrap())); } else { builder.copy(&path, &sysroot_dst.join(path.file_name().unwrap())); } } } pub fn run_cargo(builder: &Builder<'_>, cargo: Cargo, tail_args: Vec, stamp: &Path, additional_target_deps: Vec, is_check: bool) -> Vec { if builder.config.dry_run { return Vec::new(); } // `target_root_dir` looks like $dir/$target/release let target_root_dir = stamp.parent().unwrap(); // `target_deps_dir` looks like $dir/$target/release/deps let target_deps_dir = target_root_dir.join("deps"); // `host_root_dir` looks like $dir/release let host_root_dir = target_root_dir.parent().unwrap() // chop off `release` .parent().unwrap() // chop off `$target` .join(target_root_dir.file_name().unwrap()); // Spawn Cargo slurping up its JSON output. We'll start building up the // `deps` array of all files it generated along with a `toplevel` array of // files we need to probe for later. let mut deps = Vec::new(); let mut toplevel = Vec::new(); let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| { let (filenames, crate_types) = match msg { CargoMessage::CompilerArtifact { filenames, target: CargoTarget { crate_types, }, .. } => (filenames, crate_types), _ => return, }; for filename in filenames { // Skip files like executables if !filename.ends_with(".rlib") && !filename.ends_with(".lib") && !filename.ends_with(".a") && !is_dylib(&filename) && !(is_check && filename.ends_with(".rmeta")) { continue; } let filename = Path::new(&*filename); // If this was an output file in the "host dir" we don't actually // worry about it, it's not relevant for us if filename.starts_with(&host_root_dir) { // Unless it's a proc macro used in the compiler if crate_types.iter().any(|t| t == "proc-macro") { deps.push((filename.to_path_buf(), true)); } continue; } // If this was output in the `deps` dir then this is a precise file // name (hash included) so we start tracking it. if filename.starts_with(&target_deps_dir) { deps.push((filename.to_path_buf(), false)); continue; } // Otherwise this was a "top level artifact" which right now doesn't // have a hash in the name, but there's a version of this file in // the `deps` folder which *does* have a hash in the name. That's // the one we'll want to we'll probe for it later. // // We do not use `Path::file_stem` or `Path::extension` here, // because some generated files may have multiple extensions e.g. // `std-.dll.lib` on Windows. The aforementioned methods only // split the file name by the last extension (`.lib`) while we need // to split by all extensions (`.dll.lib`). let expected_len = t!(filename.metadata()).len(); let filename = filename.file_name().unwrap().to_str().unwrap(); let mut parts = filename.splitn(2, '.'); let file_stem = parts.next().unwrap().to_owned(); let extension = parts.next().unwrap().to_owned(); toplevel.push((file_stem, extension, expected_len)); } }); if !ok { exit(1); } // Ok now we need to actually find all the files listed in `toplevel`. We've // got a list of prefix/extensions and we basically just need to find the // most recent file in the `deps` folder corresponding to each one. let contents = t!(target_deps_dir.read_dir()) .map(|e| t!(e)) .map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata()))) .collect::>(); for (prefix, extension, expected_len) in toplevel { let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| { filename.starts_with(&prefix[..]) && filename[prefix.len()..].starts_with("-") && filename.ends_with(&extension[..]) && meta.len() == expected_len }); let max = candidates.max_by_key(|&&(_, _, ref metadata)| { FileTime::from_last_modification_time(metadata) }); let path_to_add = match max { Some(triple) => triple.0.to_str().unwrap(), None => panic!("no output generated for {:?} {:?}", prefix, extension), }; if is_dylib(path_to_add) { let candidate = format!("{}.lib", path_to_add); let candidate = PathBuf::from(candidate); if candidate.exists() { deps.push((candidate, false)); } } deps.push((path_to_add.into(), false)); } deps.extend(additional_target_deps.into_iter().map(|d| (d, false))); deps.sort(); let mut new_contents = Vec::new(); for (dep, proc_macro) in deps.iter() { new_contents.extend(if *proc_macro { b"h" } else { b"t" }); new_contents.extend(dep.to_str().unwrap().as_bytes()); new_contents.extend(b"\0"); } t!(fs::write(&stamp, &new_contents)); deps.into_iter().map(|(d, _)| d).collect() } pub fn stream_cargo( builder: &Builder<'_>, cargo: Cargo, tail_args: Vec, cb: &mut dyn FnMut(CargoMessage<'_>), ) -> bool { let mut cargo = Command::from(cargo); if builder.config.dry_run { return true; } // Instruct Cargo to give us json messages on stdout, critically leaving // stderr as piped so we can get those pretty colors. let mut message_format = String::from("json-render-diagnostics"); if let Some(s) = &builder.config.rustc_error_format { message_format.push_str(",json-diagnostic-"); message_format.push_str(s); } cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped()); for arg in tail_args { cargo.arg(arg); } builder.verbose(&format!("running: {:?}", cargo)); let mut child = match cargo.spawn() { Ok(child) => child, Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e), }; // Spawn Cargo slurping up its JSON output. We'll start building up the // `deps` array of all files it generated along with a `toplevel` array of // files we need to probe for later. let stdout = BufReader::new(child.stdout.take().unwrap()); for line in stdout.lines() { let line = t!(line); match serde_json::from_str::>(&line) { Ok(msg) => cb(msg), // If this was informational, just print it out and continue Err(_) => println!("{}", line) } } // Make sure Cargo actually succeeded after we read all of its stdout. let status = t!(child.wait()); if !status.success() { eprintln!("command did not execute successfully: {:?}\n\ expected success, got: {}", cargo, status); } status.success() } #[derive(Deserialize)] pub struct CargoTarget<'a> { crate_types: Vec>, } #[derive(Deserialize)] #[serde(tag = "reason", rename_all = "kebab-case")] pub enum CargoMessage<'a> { CompilerArtifact { package_id: Cow<'a, str>, features: Vec>, filenames: Vec>, target: CargoTarget<'a>, }, BuildScriptExecuted { package_id: Cow<'a, str>, }, }