//! Validates all used crates and extern libraries and loads their metadata use crate::locator::{CrateLocator, CratePaths}; use crate::rmeta::{CrateDep, CrateMetadata, CrateNumMap, CrateRoot, MetadataBlob}; use rustc::hir::map::Definitions; use rustc::middle::cstore::DepKind; use rustc::middle::cstore::{CrateSource, ExternCrate, ExternCrateSource, MetadataLoaderDyn}; use rustc::session::config::{self, Sanitizer}; use rustc::session::search_paths::PathKind; use rustc::session::{CrateDisambiguator, Session}; use rustc::ty::TyCtxt; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::Lrc; use rustc_error_codes::*; use rustc_errors::struct_span_err; use rustc_expand::base::SyntaxExtension; use rustc_hir::def_id::{CrateNum, LOCAL_CRATE}; use rustc_index::vec::IndexVec; use rustc_span::edition::Edition; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{Span, DUMMY_SP}; use rustc_target::spec::{PanicStrategy, TargetTriple}; use syntax::ast; use syntax::attr; use syntax::expand::allocator::{global_allocator_spans, AllocatorKind}; use log::{debug, info, log_enabled}; use proc_macro::bridge::client::ProcMacro; use std::path::Path; use std::{cmp, fs}; #[derive(Clone)] pub struct CStore { metas: IndexVec>>, injected_panic_runtime: Option, /// This crate needs an allocator and either provides it itself, or finds it in a dependency. /// If the above is true, then this field denotes the kind of the found allocator. allocator_kind: Option, /// This crate has a `#[global_allocator]` item. has_global_allocator: bool, } pub struct CrateLoader<'a> { // Immutable configuration. sess: &'a Session, metadata_loader: &'a MetadataLoaderDyn, local_crate_name: Symbol, // Mutable output. cstore: CStore, } pub enum LoadedMacro { MacroDef(ast::Item, Edition), ProcMacro(SyntaxExtension), } crate struct Library { pub source: CrateSource, pub metadata: MetadataBlob, } enum LoadResult { Previous(CrateNum), Loaded(Library), } enum LoadError<'a> { LocatorError(CrateLocator<'a>), } impl<'a> LoadError<'a> { fn report(self) -> ! { match self { LoadError::LocatorError(locator) => locator.report_errs(), } } } fn dump_crates(cstore: &CStore) { info!("resolved crates:"); cstore.iter_crate_data(|cnum, data| { info!(" name: {}", data.name()); info!(" cnum: {}", cnum); info!(" hash: {}", data.hash()); info!(" reqd: {:?}", data.dep_kind()); let CrateSource { dylib, rlib, rmeta } = data.source(); dylib.as_ref().map(|dl| info!(" dylib: {}", dl.0.display())); rlib.as_ref().map(|rl| info!(" rlib: {}", rl.0.display())); rmeta.as_ref().map(|rl| info!(" rmeta: {}", rl.0.display())); }); } impl CStore { crate fn from_tcx(tcx: TyCtxt<'_>) -> &CStore { tcx.cstore_as_any().downcast_ref::().expect("`tcx.cstore` is not a `CStore`") } fn alloc_new_crate_num(&mut self) -> CrateNum { self.metas.push(None); CrateNum::new(self.metas.len() - 1) } crate fn get_crate_data(&self, cnum: CrateNum) -> &CrateMetadata { self.metas[cnum] .as_ref() .unwrap_or_else(|| panic!("Failed to get crate data for {:?}", cnum)) } fn set_crate_data(&mut self, cnum: CrateNum, data: CrateMetadata) { assert!(self.metas[cnum].is_none(), "Overwriting crate metadata entry"); self.metas[cnum] = Some(Lrc::new(data)); } crate fn iter_crate_data(&self, mut f: impl FnMut(CrateNum, &CrateMetadata)) { for (cnum, data) in self.metas.iter_enumerated() { if let Some(data) = data { f(cnum, data); } } } fn push_dependencies_in_postorder(&self, deps: &mut Vec, cnum: CrateNum) { if !deps.contains(&cnum) { let data = self.get_crate_data(cnum); for &dep in data.dependencies().iter() { if dep != cnum { self.push_dependencies_in_postorder(deps, dep); } } deps.push(cnum); } } crate fn crate_dependencies_in_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = Vec::new(); if cnum == LOCAL_CRATE { self.iter_crate_data(|cnum, _| self.push_dependencies_in_postorder(&mut deps, cnum)); } else { self.push_dependencies_in_postorder(&mut deps, cnum); } deps } fn crate_dependencies_in_reverse_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = self.crate_dependencies_in_postorder(cnum); deps.reverse(); deps } crate fn injected_panic_runtime(&self) -> Option { self.injected_panic_runtime } crate fn allocator_kind(&self) -> Option { self.allocator_kind } crate fn has_global_allocator(&self) -> bool { self.has_global_allocator } } impl<'a> CrateLoader<'a> { pub fn new( sess: &'a Session, metadata_loader: &'a MetadataLoaderDyn, local_crate_name: &str, ) -> Self { CrateLoader { sess, metadata_loader, local_crate_name: Symbol::intern(local_crate_name), cstore: CStore { // We add an empty entry for LOCAL_CRATE (which maps to zero) in // order to make array indices in `metas` match with the // corresponding `CrateNum`. This first entry will always remain // `None`. metas: IndexVec::from_elem_n(None, 1), injected_panic_runtime: None, allocator_kind: None, has_global_allocator: false, }, } } pub fn cstore(&self) -> &CStore { &self.cstore } pub fn into_cstore(self) -> CStore { self.cstore } fn existing_match(&self, name: Symbol, hash: Option, kind: PathKind) -> Option { let mut ret = None; self.cstore.iter_crate_data(|cnum, data| { if data.name() != name { return; } match hash { Some(hash) if hash == data.hash() => { ret = Some(cnum); return; } Some(..) => return, None => {} } // When the hash is None we're dealing with a top-level dependency // in which case we may have a specification on the command line for // this library. Even though an upstream library may have loaded // something of the same name, we have to make sure it was loaded // from the exact same location as well. // // We're also sure to compare *paths*, not actual byte slices. The // `source` stores paths which are normalized which may be different // from the strings on the command line. let source = self.cstore.get_crate_data(cnum).source(); if let Some(entry) = self.sess.opts.externs.get(&name.as_str()) { // Only use `--extern crate_name=path` here, not `--extern crate_name`. if let Some(mut files) = entry.files() { if files.any(|l| { let l = fs::canonicalize(l).ok(); source.dylib.as_ref().map(|p| &p.0) == l.as_ref() || source.rlib.as_ref().map(|p| &p.0) == l.as_ref() }) { ret = Some(cnum); } } return; } // Alright, so we've gotten this far which means that `data` has the // right name, we don't have a hash, and we don't have a --extern // pointing for ourselves. We're still not quite yet done because we // have to make sure that this crate was found in the crate lookup // path (this is a top-level dependency) as we don't want to // implicitly load anything inside the dependency lookup path. let prev_kind = source .dylib .as_ref() .or(source.rlib.as_ref()) .or(source.rmeta.as_ref()) .expect("No sources for crate") .1; if kind.matches(prev_kind) { ret = Some(cnum); } }); return ret; } fn verify_no_symbol_conflicts(&self, span: Span, root: &CrateRoot<'_>) { // Check for (potential) conflicts with the local crate if self.local_crate_name == root.name() && self.sess.local_crate_disambiguator() == root.disambiguator() { struct_span_err!( self.sess, span, E0519, "the current crate is indistinguishable from one of its \ dependencies: it has the same crate-name `{}` and was \ compiled with the same `-C metadata` arguments. This \ will result in symbol conflicts between the two.", root.name() ) .emit() } // Check for conflicts with any crate loaded so far self.cstore.iter_crate_data(|_, other| { if other.name() == root.name() && // same crate-name other.disambiguator() == root.disambiguator() && // same crate-disambiguator other.hash() != root.hash() { // but different SVH struct_span_err!( self.sess, span, E0523, "found two different crates with name `{}` that are \ not distinguished by differing `-C metadata`. This \ will result in symbol conflicts between the two.", root.name() ) .emit(); } }); } fn register_crate( &mut self, host_lib: Option, root: Option<&CratePaths>, span: Span, lib: Library, dep_kind: DepKind, name: Symbol, ) -> CrateNum { let _prof_timer = self.sess.prof.generic_activity("metadata_register_crate"); let Library { source, metadata } = lib; let crate_root = metadata.get_root(); let host_hash = host_lib.as_ref().map(|lib| lib.metadata.get_root().hash()); self.verify_no_symbol_conflicts(span, &crate_root); let private_dep = self.sess.opts.externs.get(&name.as_str()).map(|e| e.is_private_dep).unwrap_or(false); info!("register crate `{}` (private_dep = {})", crate_root.name(), private_dep); // Claim this crate number and cache it let cnum = self.cstore.alloc_new_crate_num(); // Maintain a reference to the top most crate. // Stash paths for top-most crate locally if necessary. let crate_paths; let root = if let Some(root) = root { root } else { crate_paths = CratePaths::new(crate_root.name(), source.clone()); &crate_paths }; let cnum_map = self.resolve_crate_deps(root, &crate_root, &metadata, cnum, span, dep_kind); let raw_proc_macros = if crate_root.is_proc_macro_crate() { let temp_root; let (dlsym_source, dlsym_root) = match &host_lib { Some(host_lib) => (&host_lib.source, { temp_root = host_lib.metadata.get_root(); &temp_root }), None => (&source, &crate_root), }; let dlsym_dylib = dlsym_source.dylib.as_ref().expect("no dylib for a proc-macro crate"); Some(self.dlsym_proc_macros(&dlsym_dylib.0, dlsym_root.disambiguator(), span)) } else { None }; self.cstore.set_crate_data( cnum, CrateMetadata::new( self.sess, metadata, crate_root, raw_proc_macros, cnum, cnum_map, dep_kind, source, private_dep, host_hash, ), ); cnum } fn load_proc_macro<'b>( &self, locator: &mut CrateLocator<'b>, path_kind: PathKind, ) -> Option<(LoadResult, Option)> where 'a: 'b, { // Use a new crate locator so trying to load a proc macro doesn't affect the error // message we emit let mut proc_macro_locator = locator.clone(); // Try to load a proc macro proc_macro_locator.is_proc_macro = Some(true); // Load the proc macro crate for the target let (locator, target_result) = if self.sess.opts.debugging_opts.dual_proc_macros { proc_macro_locator.reset(); let result = match self.load(&mut proc_macro_locator)? { LoadResult::Previous(cnum) => return Some((LoadResult::Previous(cnum), None)), LoadResult::Loaded(library) => Some(LoadResult::Loaded(library)), }; locator.hash = locator.host_hash; // Use the locator when looking for the host proc macro crate, as that is required // so we want it to affect the error message (locator, result) } else { (&mut proc_macro_locator, None) }; // Load the proc macro crate for the host locator.reset(); locator.is_proc_macro = Some(true); locator.target = &self.sess.host; locator.triple = TargetTriple::from_triple(config::host_triple()); locator.filesearch = self.sess.host_filesearch(path_kind); let host_result = self.load(locator)?; Some(if self.sess.opts.debugging_opts.dual_proc_macros { let host_result = match host_result { LoadResult::Previous(..) => { panic!("host and target proc macros must be loaded in lock-step") } LoadResult::Loaded(library) => library, }; (target_result.unwrap(), Some(host_result)) } else { (host_result, None) }) } fn resolve_crate<'b>( &'b mut self, name: Symbol, span: Span, dep_kind: DepKind, dep: Option<(&'b CratePaths, &'b CrateDep)>, ) -> CrateNum { self.maybe_resolve_crate(name, span, dep_kind, dep).unwrap_or_else(|err| err.report()) } fn maybe_resolve_crate<'b>( &'b mut self, name: Symbol, span: Span, mut dep_kind: DepKind, dep: Option<(&'b CratePaths, &'b CrateDep)>, ) -> Result> { info!("resolving crate `{}`", name); let (root, hash, host_hash, extra_filename, path_kind) = match dep { Some((root, dep)) => ( Some(root), Some(dep.hash), dep.host_hash, Some(&dep.extra_filename[..]), PathKind::Dependency, ), None => (None, None, None, None, PathKind::Crate), }; let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) { (LoadResult::Previous(cnum), None) } else { info!("falling back to a load"); let mut locator = CrateLocator::new( self.sess, self.metadata_loader, name, hash, host_hash, extra_filename, false, // is_host path_kind, span, root, Some(false), // is_proc_macro ); self.load(&mut locator) .map(|r| (r, None)) .or_else(|| { dep_kind = DepKind::UnexportedMacrosOnly; self.load_proc_macro(&mut locator, path_kind) }) .ok_or_else(move || LoadError::LocatorError(locator))? }; match result { (LoadResult::Previous(cnum), None) => { let data = self.cstore.get_crate_data(cnum); if data.is_proc_macro_crate() { dep_kind = DepKind::UnexportedMacrosOnly; } data.update_dep_kind(|data_dep_kind| cmp::max(data_dep_kind, dep_kind)); Ok(cnum) } (LoadResult::Loaded(library), host_library) => { Ok(self.register_crate(host_library, root, span, library, dep_kind, name)) } _ => panic!(), } } fn load(&self, locator: &mut CrateLocator<'_>) -> Option { let library = locator.maybe_load_library_crate()?; // In the case that we're loading a crate, but not matching // against a hash, we could load a crate which has the same hash // as an already loaded crate. If this is the case prevent // duplicates by just using the first crate. // // Note that we only do this for target triple crates, though, as we // don't want to match a host crate against an equivalent target one // already loaded. let root = library.metadata.get_root(); if locator.triple == self.sess.opts.target_triple { let mut result = LoadResult::Loaded(library); self.cstore.iter_crate_data(|cnum, data| { if data.name() == root.name() && root.hash() == data.hash() { assert!(locator.hash.is_none()); info!("load success, going to previous cnum: {}", cnum); result = LoadResult::Previous(cnum); } }); Some(result) } else { Some(LoadResult::Loaded(library)) } } fn update_extern_crate(&self, cnum: CrateNum, extern_crate: ExternCrate) { let cmeta = self.cstore.get_crate_data(cnum); if cmeta.update_extern_crate(extern_crate) { // Propagate the extern crate info to dependencies if it was updated. let extern_crate = ExternCrate { dependency_of: cnum, ..extern_crate }; for &dep_cnum in cmeta.dependencies().iter() { self.update_extern_crate(dep_cnum, extern_crate); } } } // Go through the crate metadata and load any crates that it references fn resolve_crate_deps( &mut self, root: &CratePaths, crate_root: &CrateRoot<'_>, metadata: &MetadataBlob, krate: CrateNum, span: Span, dep_kind: DepKind, ) -> CrateNumMap { debug!("resolving deps of external crate"); if crate_root.is_proc_macro_crate() { return CrateNumMap::new(); } // The map from crate numbers in the crate we're resolving to local crate numbers. // We map 0 and all other holes in the map to our parent crate. The "additional" // self-dependencies should be harmless. std::iter::once(krate) .chain(crate_root.decode_crate_deps(metadata).map(|dep| { info!( "resolving dep crate {} hash: `{}` extra filename: `{}`", dep.name, dep.hash, dep.extra_filename ); if dep.kind == DepKind::UnexportedMacrosOnly { return krate; } let dep_kind = match dep_kind { DepKind::MacrosOnly => DepKind::MacrosOnly, _ => dep.kind, }; self.resolve_crate(dep.name, span, dep_kind, Some((root, &dep))) })) .collect() } fn dlsym_proc_macros( &self, path: &Path, disambiguator: CrateDisambiguator, span: Span, ) -> &'static [ProcMacro] { use crate::dynamic_lib::DynamicLibrary; use std::env; // Make sure the path contains a / or the linker will search for it. let path = env::current_dir().unwrap().join(path); let lib = match DynamicLibrary::open(Some(&path)) { Ok(lib) => lib, Err(err) => self.sess.span_fatal(span, &err), }; let sym = self.sess.generate_proc_macro_decls_symbol(disambiguator); let decls = unsafe { let sym = match lib.symbol(&sym) { Ok(f) => f, Err(err) => self.sess.span_fatal(span, &err), }; *(sym as *const &[ProcMacro]) }; // Intentionally leak the dynamic library. We can't ever unload it // since the library can make things that will live arbitrarily long. std::mem::forget(lib); decls } fn inject_panic_runtime(&mut self, krate: &ast::Crate) { // If we're only compiling an rlib, then there's no need to select a // panic runtime, so we just skip this section entirely. let any_non_rlib = self.sess.crate_types.borrow().iter().any(|ct| *ct != config::CrateType::Rlib); if !any_non_rlib { info!("panic runtime injection skipped, only generating rlib"); return; } // If we need a panic runtime, we try to find an existing one here. At // the same time we perform some general validation of the DAG we've got // going such as ensuring everything has a compatible panic strategy. // // The logic for finding the panic runtime here is pretty much the same // as the allocator case with the only addition that the panic strategy // compilation mode also comes into play. let desired_strategy = self.sess.panic_strategy(); let mut runtime_found = false; let mut needs_panic_runtime = attr::contains_name(&krate.attrs, sym::needs_panic_runtime); self.cstore.iter_crate_data(|cnum, data| { needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime(); if data.is_panic_runtime() { // Inject a dependency from all #![needs_panic_runtime] to this // #![panic_runtime] crate. self.inject_dependency_if(cnum, "a panic runtime", &|data| { data.needs_panic_runtime() }); runtime_found = runtime_found || data.dep_kind() == DepKind::Explicit; } }); // If an explicitly linked and matching panic runtime was found, or if // we just don't need one at all, then we're done here and there's // nothing else to do. if !needs_panic_runtime || runtime_found { return; } // By this point we know that we (a) need a panic runtime and (b) no // panic runtime was explicitly linked. Here we just load an appropriate // default runtime for our panic strategy and then inject the // dependencies. // // We may resolve to an already loaded crate (as the crate may not have // been explicitly linked prior to this) and we may re-inject // dependencies again, but both of those situations are fine. // // Also note that we have yet to perform validation of the crate graph // in terms of everyone has a compatible panic runtime format, that's // performed later as part of the `dependency_format` module. let name = match desired_strategy { PanicStrategy::Unwind => Symbol::intern("panic_unwind"), PanicStrategy::Abort => Symbol::intern("panic_abort"), }; info!("panic runtime not found -- loading {}", name); let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Implicit, None); let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a panic runtime // and the panic strategy is indeed what we thought it was. if !data.is_panic_runtime() { self.sess.err(&format!("the crate `{}` is not a panic runtime", name)); } if data.panic_strategy() != desired_strategy { self.sess.err(&format!( "the crate `{}` does not have the panic \ strategy `{}`", name, desired_strategy.desc() )); } self.cstore.injected_panic_runtime = Some(cnum); self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); } fn inject_sanitizer_runtime(&mut self) { if let Some(ref sanitizer) = self.sess.opts.debugging_opts.sanitizer { // Sanitizers can only be used on some tested platforms with // executables linked to `std` const ASAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu", "x86_64-apple-darwin"]; const TSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu", "x86_64-apple-darwin"]; const LSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"]; const MSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"]; let supported_targets = match *sanitizer { Sanitizer::Address => ASAN_SUPPORTED_TARGETS, Sanitizer::Thread => TSAN_SUPPORTED_TARGETS, Sanitizer::Leak => LSAN_SUPPORTED_TARGETS, Sanitizer::Memory => MSAN_SUPPORTED_TARGETS, }; if !supported_targets.contains(&&*self.sess.opts.target_triple.triple()) { self.sess.err(&format!( "{:?}Sanitizer only works with the `{}` target", sanitizer, supported_targets.join("` or `") )); return; } // firstyear 2017 - during testing I was unable to access an OSX machine // to make this work on different crate types. As a result, today I have // only been able to test and support linux as a target. if self.sess.opts.target_triple.triple() == "x86_64-unknown-linux-gnu" { if !self.sess.crate_types.borrow().iter().all(|ct| { match *ct { // Link the runtime config::CrateType::Executable => true, // This crate will be compiled with the required // instrumentation pass config::CrateType::Staticlib | config::CrateType::Rlib | config::CrateType::Dylib | config::CrateType::Cdylib => false, _ => { self.sess.err(&format!( "Only executables, staticlibs, \ cdylibs, dylibs and rlibs can be compiled with \ `-Z sanitizer`" )); false } } }) { return; } } else { if !self.sess.crate_types.borrow().iter().all(|ct| { match *ct { // Link the runtime config::CrateType::Executable => true, // This crate will be compiled with the required // instrumentation pass config::CrateType::Rlib => false, _ => { self.sess.err(&format!( "Only executables and rlibs can be \ compiled with `-Z sanitizer`" )); false } } }) { return; } } let mut uses_std = false; self.cstore.iter_crate_data(|_, data| { if data.name() == sym::std { uses_std = true; } }); if uses_std { let name = Symbol::intern(match sanitizer { Sanitizer::Address => "rustc_asan", Sanitizer::Leak => "rustc_lsan", Sanitizer::Memory => "rustc_msan", Sanitizer::Thread => "rustc_tsan", }); info!("loading sanitizer: {}", name); let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Explicit, None); let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a sanitizer runtime if !data.is_sanitizer_runtime() { self.sess.err(&format!("the crate `{}` is not a sanitizer runtime", name)); } } else { self.sess.err("Must link std to be compiled with `-Z sanitizer`"); } } } fn inject_profiler_runtime(&mut self) { if self.sess.opts.debugging_opts.profile || self.sess.opts.cg.profile_generate.enabled() { info!("loading profiler"); let name = Symbol::intern("profiler_builtins"); let cnum = self.resolve_crate(name, DUMMY_SP, DepKind::Implicit, None); let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a profiler runtime if !data.is_profiler_runtime() { self.sess.err(&format!( "the crate `profiler_builtins` is not \ a profiler runtime" )); } } } fn inject_allocator_crate(&mut self, krate: &ast::Crate) { self.cstore.has_global_allocator = match &*global_allocator_spans(krate) { [span1, span2, ..] => { self.sess .struct_span_err(*span2, "cannot define multiple global allocators") .span_label(*span2, "cannot define a new global allocator") .span_label(*span1, "previous global allocator is defined here") .emit(); true } spans => !spans.is_empty(), }; // Check to see if we actually need an allocator. This desire comes // about through the `#![needs_allocator]` attribute and is typically // written down in liballoc. let mut needs_allocator = attr::contains_name(&krate.attrs, sym::needs_allocator); self.cstore.iter_crate_data(|_, data| { needs_allocator = needs_allocator || data.needs_allocator(); }); if !needs_allocator { return; } // At this point we've determined that we need an allocator. Let's see // if our compilation session actually needs an allocator based on what // we're emitting. let all_rlib = self.sess.crate_types.borrow().iter().all(|ct| match *ct { config::CrateType::Rlib => true, _ => false, }); if all_rlib { return; } // Ok, we need an allocator. Not only that but we're actually going to // create an artifact that needs one linked in. Let's go find the one // that we're going to link in. // // First up we check for global allocators. Look at the crate graph here // and see what's a global allocator, including if we ourselves are a // global allocator. let mut global_allocator = self.cstore.has_global_allocator.then(|| Symbol::intern("this crate")); self.cstore.iter_crate_data(|_, data| { if !data.has_global_allocator() { return; } match global_allocator { Some(other_crate) => { self.sess.err(&format!( "the `#[global_allocator]` in {} \ conflicts with global \ allocator in: {}", other_crate, data.name() )); } None => global_allocator = Some(data.name()), } }); if global_allocator.is_some() { self.cstore.allocator_kind = Some(AllocatorKind::Global); return; } // Ok we haven't found a global allocator but we still need an // allocator. At this point our allocator request is typically fulfilled // by the standard library, denoted by the `#![default_lib_allocator]` // attribute. let mut has_default = attr::contains_name(&krate.attrs, sym::default_lib_allocator); self.cstore.iter_crate_data(|_, data| { if data.has_default_lib_allocator() { has_default = true; } }); if !has_default { self.sess.err( "no global memory allocator found but one is \ required; link to std or \ add `#[global_allocator]` to a static item \ that implements the GlobalAlloc trait.", ); } self.cstore.allocator_kind = Some(AllocatorKind::Default); } fn inject_dependency_if( &self, krate: CrateNum, what: &str, needs_dep: &dyn Fn(&CrateMetadata) -> bool, ) { // don't perform this validation if the session has errors, as one of // those errors may indicate a circular dependency which could cause // this to stack overflow. if self.sess.has_errors() { return; } // Before we inject any dependencies, make sure we don't inject a // circular dependency by validating that this crate doesn't // transitively depend on any crates satisfying `needs_dep`. for dep in self.cstore.crate_dependencies_in_reverse_postorder(krate) { let data = self.cstore.get_crate_data(dep); if needs_dep(&data) { self.sess.err(&format!( "the crate `{}` cannot depend \ on a crate that needs {}, but \ it depends on `{}`", self.cstore.get_crate_data(krate).name(), what, data.name() )); } } // All crates satisfying `needs_dep` do not explicitly depend on the // crate provided for this compile, but in order for this compilation to // be successfully linked we need to inject a dependency (to order the // crates on the command line correctly). self.cstore.iter_crate_data(|cnum, data| { if !needs_dep(data) { return; } info!("injecting a dep from {} to {}", cnum, krate); data.add_dependency(krate); }); } pub fn postprocess(&mut self, krate: &ast::Crate) { self.inject_sanitizer_runtime(); self.inject_profiler_runtime(); self.inject_allocator_crate(krate); self.inject_panic_runtime(krate); if log_enabled!(log::Level::Info) { dump_crates(&self.cstore); } } pub fn process_extern_crate( &mut self, item: &ast::Item, definitions: &Definitions, ) -> CrateNum { match item.kind { ast::ItemKind::ExternCrate(orig_name) => { debug!( "resolving extern crate stmt. ident: {} orig_name: {:?}", item.ident, orig_name ); let name = match orig_name { Some(orig_name) => { crate::validate_crate_name( Some(self.sess), &orig_name.as_str(), Some(item.span), ); orig_name } None => item.ident.name, }; let dep_kind = if attr::contains_name(&item.attrs, sym::no_link) { DepKind::UnexportedMacrosOnly } else { DepKind::Explicit }; let cnum = self.resolve_crate(name, item.span, dep_kind, None); let def_id = definitions.opt_local_def_id(item.id).unwrap(); let path_len = definitions.def_path(def_id.index).data.len(); self.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Extern(def_id), span: item.span, path_len, dependency_of: LOCAL_CRATE, }, ); cnum } _ => bug!(), } } pub fn process_path_extern(&mut self, name: Symbol, span: Span) -> CrateNum { let cnum = self.resolve_crate(name, span, DepKind::Explicit, None); self.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Path, span, // to have the least priority in `update_extern_crate` path_len: usize::max_value(), dependency_of: LOCAL_CRATE, }, ); cnum } pub fn maybe_process_path_extern(&mut self, name: Symbol, span: Span) -> Option { self.maybe_resolve_crate(name, span, DepKind::Explicit, None).ok() } }