//! Set and unset common attributes on LLVM values. use std::ffi::CString; use rustc::middle::codegen_fn_attrs::CodegenFnAttrFlags; use rustc::session::config::{OptLevel, Sanitizer}; use rustc::session::Session; use rustc::ty::layout::HasTyCtxt; use rustc::ty::query::Providers; use rustc::ty::{self, Ty, TyCtxt}; use rustc_codegen_ssa::traits::*; use rustc_data_structures::const_cstr; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::small_c_str::SmallCStr; use rustc_hir::def_id::{DefId, LOCAL_CRATE}; use rustc_target::abi::call::Conv; use rustc_target::spec::PanicStrategy; use crate::abi::FnAbi; use crate::attributes; use crate::llvm::AttributePlace::Function; use crate::llvm::{self, Attribute}; use crate::llvm_util; pub use rustc_attr::{self as attr, InlineAttr, OptimizeAttr}; use crate::context::CodegenCx; use crate::value::Value; /// Mark LLVM function to use provided inline heuristic. #[inline] fn inline(cx: &CodegenCx<'ll, '_>, val: &'ll Value, inline: InlineAttr) { use self::InlineAttr::*; match inline { Hint => Attribute::InlineHint.apply_llfn(Function, val), Always => Attribute::AlwaysInline.apply_llfn(Function, val), Never => { if cx.tcx().sess.target.target.arch != "amdgpu" { Attribute::NoInline.apply_llfn(Function, val); } } None => { Attribute::InlineHint.unapply_llfn(Function, val); Attribute::AlwaysInline.unapply_llfn(Function, val); Attribute::NoInline.unapply_llfn(Function, val); } }; } /// Tell LLVM to emit or not emit the information necessary to unwind the stack for the function. #[inline] pub fn emit_uwtable(val: &'ll Value, emit: bool) { Attribute::UWTable.toggle_llfn(Function, val, emit); } /// Tell LLVM whether the function can or cannot unwind. #[inline] fn unwind(val: &'ll Value, can_unwind: bool) { Attribute::NoUnwind.toggle_llfn(Function, val, !can_unwind); } /// Tell LLVM if this function should be 'naked', i.e., skip the epilogue and prologue. #[inline] fn naked(val: &'ll Value, is_naked: bool) { Attribute::Naked.toggle_llfn(Function, val, is_naked); } pub fn set_frame_pointer_elimination(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { if cx.sess().must_not_eliminate_frame_pointers() { if llvm_util::get_major_version() >= 8 { llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("frame-pointer"), const_cstr!("all"), ); } else { llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("no-frame-pointer-elim"), const_cstr!("true"), ); } } } /// Tell LLVM what instrument function to insert. #[inline] fn set_instrument_function(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { if cx.sess().instrument_mcount() { // Similar to `clang -pg` behavior. Handled by the // `post-inline-ee-instrument` LLVM pass. // The function name varies on platforms. // See test/CodeGen/mcount.c in clang. let mcount_name = CString::new(cx.sess().target.target.options.target_mcount.as_str().as_bytes()) .unwrap(); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("instrument-function-entry-inlined"), &mcount_name, ); } } fn set_probestack(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { // Only use stack probes if the target specification indicates that we // should be using stack probes if !cx.sess().target.target.options.stack_probes { return; } // Currently stack probes seem somewhat incompatible with the address // sanitizer and thread sanitizer. With asan we're already protected from // stack overflow anyway so we don't really need stack probes regardless. match cx.sess().opts.debugging_opts.sanitizer { Some(Sanitizer::Address) | Some(Sanitizer::Thread) => return, _ => {} } // probestack doesn't play nice either with `-C profile-generate`. if cx.sess().opts.cg.profile_generate.enabled() { return; } // probestack doesn't play nice either with gcov profiling. if cx.sess().opts.debugging_opts.profile { return; } // Flag our internal `__rust_probestack` function as the stack probe symbol. // This is defined in the `compiler-builtins` crate for each architecture. llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("probe-stack"), const_cstr!("__rust_probestack"), ); } fn translate_obsolete_target_features(feature: &str) -> &str { const LLVM9_FEATURE_CHANGES: &[(&str, &str)] = &[("+fp-only-sp", "-fp64"), ("-fp-only-sp", "+fp64"), ("+d16", "-d32"), ("-d16", "+d32")]; if llvm_util::get_major_version() >= 9 { for &(old, new) in LLVM9_FEATURE_CHANGES { if feature == old { return new; } } } else { for &(old, new) in LLVM9_FEATURE_CHANGES { if feature == new { return old; } } } feature } pub fn llvm_target_features(sess: &Session) -> impl Iterator { const RUSTC_SPECIFIC_FEATURES: &[&str] = &["crt-static"]; let cmdline = sess .opts .cg .target_feature .split(',') .filter(|f| !RUSTC_SPECIFIC_FEATURES.iter().any(|s| f.contains(s))); sess.target .target .options .features .split(',') .chain(cmdline) .filter(|l| !l.is_empty()) .map(translate_obsolete_target_features) } pub fn apply_target_cpu_attr(cx: &CodegenCx<'ll, '_>, llfn: &'ll Value) { let target_cpu = SmallCStr::new(llvm_util::target_cpu(cx.tcx.sess)); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("target-cpu"), target_cpu.as_c_str(), ); } /// Sets the `NonLazyBind` LLVM attribute on a given function, /// assuming the codegen options allow skipping the PLT. pub fn non_lazy_bind(sess: &Session, llfn: &'ll Value) { // Don't generate calls through PLT if it's not necessary if !sess.needs_plt() { Attribute::NonLazyBind.apply_llfn(Function, llfn); } } pub(crate) fn default_optimisation_attrs(sess: &Session, llfn: &'ll Value) { match sess.opts.optimize { OptLevel::Size => { llvm::Attribute::MinSize.unapply_llfn(Function, llfn); llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn); llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn); } OptLevel::SizeMin => { llvm::Attribute::MinSize.apply_llfn(Function, llfn); llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn); llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn); } OptLevel::No => { llvm::Attribute::MinSize.unapply_llfn(Function, llfn); llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn); llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn); } _ => {} } } /// Composite function which sets LLVM attributes for function depending on its AST (`#[attribute]`) /// attributes. pub fn from_fn_attrs( cx: &CodegenCx<'ll, 'tcx>, llfn: &'ll Value, instance: ty::Instance<'tcx>, fn_abi: &FnAbi<'tcx, Ty<'tcx>>, ) { let codegen_fn_attrs = cx.tcx.codegen_fn_attrs(instance.def_id()); match codegen_fn_attrs.optimize { OptimizeAttr::None => { default_optimisation_attrs(cx.tcx.sess, llfn); } OptimizeAttr::Speed => { llvm::Attribute::MinSize.unapply_llfn(Function, llfn); llvm::Attribute::OptimizeForSize.unapply_llfn(Function, llfn); llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn); } OptimizeAttr::Size => { llvm::Attribute::MinSize.apply_llfn(Function, llfn); llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn); llvm::Attribute::OptimizeNone.unapply_llfn(Function, llfn); } } // FIXME(eddyb) consolidate these two `inline` calls (and avoid overwrites). if instance.def.requires_inline(cx.tcx) { inline(cx, llfn, attributes::InlineAttr::Hint); } inline(cx, llfn, codegen_fn_attrs.inline); // The `uwtable` attribute according to LLVM is: // // This attribute indicates that the ABI being targeted requires that an // unwind table entry be produced for this function even if we can show // that no exceptions passes by it. This is normally the case for the // ELF x86-64 abi, but it can be disabled for some compilation units. // // Typically when we're compiling with `-C panic=abort` (which implies this // `no_landing_pads` check) we don't need `uwtable` because we can't // generate any exceptions! On Windows, however, exceptions include other // events such as illegal instructions, segfaults, etc. This means that on // Windows we end up still needing the `uwtable` attribute even if the `-C // panic=abort` flag is passed. // // You can also find more info on why Windows is whitelisted here in: // https://bugzilla.mozilla.org/show_bug.cgi?id=1302078 if !cx.sess().no_landing_pads() || cx.sess().target.target.options.requires_uwtable { attributes::emit_uwtable(llfn, true); } set_frame_pointer_elimination(cx, llfn); set_instrument_function(cx, llfn); set_probestack(cx, llfn); if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::COLD) { Attribute::Cold.apply_llfn(Function, llfn); } if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::FFI_RETURNS_TWICE) { Attribute::ReturnsTwice.apply_llfn(Function, llfn); } if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) { naked(llfn, true); } if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::ALLOCATOR) { Attribute::NoAlias.apply_llfn(llvm::AttributePlace::ReturnValue, llfn); } unwind( llfn, if cx.tcx.sess.panic_strategy() != PanicStrategy::Unwind { // In panic=abort mode we assume nothing can unwind anywhere, so // optimize based on this! false } else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::UNWIND) { // If a specific #[unwind] attribute is present, use that. true } else if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND) { // Special attribute for allocator functions, which can't unwind. false } else { if fn_abi.conv == Conv::Rust { // Any Rust method (or `extern "Rust" fn` or `extern // "rust-call" fn`) is explicitly allowed to unwind // (unless it has no-unwind attribute, handled above). true } else { // Anything else is either: // // 1. A foreign item using a non-Rust ABI (like `extern "C" { fn foo(); }`), or // // 2. A Rust item using a non-Rust ABI (like `extern "C" fn foo() { ... }`). // // Foreign items (case 1) are assumed to not unwind; it is // UB otherwise. (At least for now; see also // rust-lang/rust#63909 and Rust RFC 2753.) // // Items defined in Rust with non-Rust ABIs (case 2) are also // not supposed to unwind. Whether this should be enforced // (versus stating it is UB) and *how* it would be enforced // is currently under discussion; see rust-lang/rust#58794. // // In either case, we mark item as explicitly nounwind. false } }, ); // Always annotate functions with the target-cpu they are compiled for. // Without this, ThinLTO won't inline Rust functions into Clang generated // functions (because Clang annotates functions this way too). apply_target_cpu_attr(cx, llfn); let features = llvm_target_features(cx.tcx.sess) .map(|s| s.to_string()) .chain(codegen_fn_attrs.target_features.iter().map(|f| { let feature = &f.as_str(); format!("+{}", llvm_util::to_llvm_feature(cx.tcx.sess, feature)) })) .collect::>() .join(","); if !features.is_empty() { let val = CString::new(features).unwrap(); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("target-features"), &val, ); } // Note that currently the `wasm-import-module` doesn't do anything, but // eventually LLVM 7 should read this and ferry the appropriate import // module to the output file. if cx.tcx.sess.target.target.arch == "wasm32" { if let Some(module) = wasm_import_module(cx.tcx, instance.def_id()) { llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("wasm-import-module"), &module, ); let name = codegen_fn_attrs.link_name.unwrap_or_else(|| cx.tcx.item_name(instance.def_id())); let name = CString::new(&name.as_str()[..]).unwrap(); llvm::AddFunctionAttrStringValue( llfn, llvm::AttributePlace::Function, const_cstr!("wasm-import-name"), &name, ); } } } pub fn provide(providers: &mut Providers<'_>) { providers.target_features_whitelist = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); if tcx.sess.opts.actually_rustdoc { // rustdoc needs to be able to document functions that use all the features, so // whitelist them all tcx.arena .alloc(llvm_util::all_known_features().map(|(a, b)| (a.to_string(), b)).collect()) } else { tcx.arena.alloc( llvm_util::target_feature_whitelist(tcx.sess) .iter() .map(|&(a, b)| (a.to_string(), b)) .collect(), ) } }; provide_extern(providers); } pub fn provide_extern(providers: &mut Providers<'_>) { providers.wasm_import_module_map = |tcx, cnum| { // Build up a map from DefId to a `NativeLibrary` structure, where // `NativeLibrary` internally contains information about // `#[link(wasm_import_module = "...")]` for example. let native_libs = tcx.native_libraries(cnum); let def_id_to_native_lib = native_libs .iter() .filter_map(|lib| lib.foreign_module.map(|id| (id, lib))) .collect::>(); let mut ret = FxHashMap::default(); for lib in tcx.foreign_modules(cnum).iter() { let module = def_id_to_native_lib.get(&lib.def_id).and_then(|s| s.wasm_import_module); let module = match module { Some(s) => s, None => continue, }; ret.extend(lib.foreign_items.iter().map(|id| { assert_eq!(id.krate, cnum); (*id, module.to_string()) })); } tcx.arena.alloc(ret) }; } fn wasm_import_module(tcx: TyCtxt<'_>, id: DefId) -> Option { tcx.wasm_import_module_map(id.krate).get(&id).map(|s| CString::new(&s[..]).unwrap()) }