use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext}; use rustc::ty; use rustc_attr as attr; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::intravisit::FnKind; use rustc_hir::{GenericParamKind, PatKind}; use rustc_span::symbol::sym; use rustc_span::{symbol::Ident, BytePos, Span}; use rustc_target::spec::abi::Abi; use syntax::ast; #[derive(PartialEq)] pub enum MethodLateContext { TraitAutoImpl, TraitImpl, PlainImpl, } pub fn method_context(cx: &LateContext<'_, '_>, id: hir::HirId) -> MethodLateContext { let def_id = cx.tcx.hir().local_def_id(id); let item = cx.tcx.associated_item(def_id); match item.container { ty::TraitContainer(..) => MethodLateContext::TraitAutoImpl, ty::ImplContainer(cid) => match cx.tcx.impl_trait_ref(cid) { Some(_) => MethodLateContext::TraitImpl, None => MethodLateContext::PlainImpl, }, } } declare_lint! { pub NON_CAMEL_CASE_TYPES, Warn, "types, variants, traits and type parameters should have camel case names" } declare_lint_pass!(NonCamelCaseTypes => [NON_CAMEL_CASE_TYPES]); fn char_has_case(c: char) -> bool { c.is_lowercase() || c.is_uppercase() } fn is_camel_case(name: &str) -> bool { let name = name.trim_matches('_'); if name.is_empty() { return true; } // start with a non-lowercase letter rather than non-uppercase // ones (some scripts don't have a concept of upper/lowercase) !name.chars().next().unwrap().is_lowercase() && !name.contains("__") && !name.chars().collect::>().windows(2).any(|pair| { // contains a capitalisable character followed by, or preceded by, an underscore char_has_case(pair[0]) && pair[1] == '_' || char_has_case(pair[1]) && pair[0] == '_' }) } fn to_camel_case(s: &str) -> String { s.trim_matches('_') .split('_') .filter(|component| !component.is_empty()) .map(|component| { let mut camel_cased_component = String::new(); let mut new_word = true; let mut prev_is_lower_case = true; for c in component.chars() { // Preserve the case if an uppercase letter follows a lowercase letter, so that // `camelCase` is converted to `CamelCase`. if prev_is_lower_case && c.is_uppercase() { new_word = true; } if new_word { camel_cased_component.push_str(&c.to_uppercase().to_string()); } else { camel_cased_component.push_str(&c.to_lowercase().to_string()); } prev_is_lower_case = c.is_lowercase(); new_word = false; } camel_cased_component }) .fold((String::new(), None), |(acc, prev): (String, Option), next| { // separate two components with an underscore if their boundary cannot // be distinguished using a uppercase/lowercase case distinction let join = if let Some(prev) = prev { let l = prev.chars().last().unwrap(); let f = next.chars().next().unwrap(); !char_has_case(l) && !char_has_case(f) } else { false }; (acc + if join { "_" } else { "" } + &next, Some(next)) }) .0 } impl NonCamelCaseTypes { fn check_case(&self, cx: &EarlyContext<'_>, sort: &str, ident: &Ident) { let name = &ident.name.as_str(); if !is_camel_case(name) { let msg = format!("{} `{}` should have an upper camel case name", sort, name); cx.struct_span_lint(NON_CAMEL_CASE_TYPES, ident.span, &msg) .span_suggestion( ident.span, "convert the identifier to upper camel case", to_camel_case(name), Applicability::MaybeIncorrect, ) .emit(); } } } impl EarlyLintPass for NonCamelCaseTypes { fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { let has_repr_c = it .attrs .iter() .any(|attr| attr::find_repr_attrs(&cx.sess.parse_sess, attr).contains(&attr::ReprC)); if has_repr_c { return; } match it.kind { ast::ItemKind::TyAlias(..) | ast::ItemKind::Enum(..) | ast::ItemKind::Struct(..) | ast::ItemKind::Union(..) => self.check_case(cx, "type", &it.ident), ast::ItemKind::Trait(..) => self.check_case(cx, "trait", &it.ident), _ => (), } } fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { if let ast::AssocItemKind::TyAlias(..) = it.kind { self.check_case(cx, "associated type", &it.ident); } } fn check_variant(&mut self, cx: &EarlyContext<'_>, v: &ast::Variant) { self.check_case(cx, "variant", &v.ident); } fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) { if let ast::GenericParamKind::Type { .. } = param.kind { self.check_case(cx, "type parameter", ¶m.ident); } } } declare_lint! { pub NON_SNAKE_CASE, Warn, "variables, methods, functions, lifetime parameters and modules should have snake case names" } declare_lint_pass!(NonSnakeCase => [NON_SNAKE_CASE]); impl NonSnakeCase { fn to_snake_case(mut str: &str) -> String { let mut words = vec![]; // Preserve leading underscores str = str.trim_start_matches(|c: char| { if c == '_' { words.push(String::new()); true } else { false } }); for s in str.split('_') { let mut last_upper = false; let mut buf = String::new(); if s.is_empty() { continue; } for ch in s.chars() { if !buf.is_empty() && buf != "'" && ch.is_uppercase() && !last_upper { words.push(buf); buf = String::new(); } last_upper = ch.is_uppercase(); buf.extend(ch.to_lowercase()); } words.push(buf); } words.join("_") } /// Checks if a given identifier is snake case, and reports a diagnostic if not. fn check_snake_case(&self, cx: &LateContext<'_, '_>, sort: &str, ident: &Ident) { fn is_snake_case(ident: &str) -> bool { if ident.is_empty() { return true; } let ident = ident.trim_start_matches('\''); let ident = ident.trim_matches('_'); let mut allow_underscore = true; ident.chars().all(|c| { allow_underscore = match c { '_' if !allow_underscore => return false, '_' => false, // It would be more obvious to use `c.is_lowercase()`, // but some characters do not have a lowercase form c if !c.is_uppercase() => true, _ => return false, }; true }) } let name = &ident.name.as_str(); if !is_snake_case(name) { let sc = NonSnakeCase::to_snake_case(name); let msg = format!("{} `{}` should have a snake case name", sort, name); let mut err = cx.struct_span_lint(NON_SNAKE_CASE, ident.span, &msg); // We have a valid span in almost all cases, but we don't have one when linting a crate // name provided via the command line. if !ident.span.is_dummy() { err.span_suggestion( ident.span, "convert the identifier to snake case", sc, Applicability::MaybeIncorrect, ); } else { err.help(&format!("convert the identifier to snake case: `{}`", sc)); } err.emit(); } } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonSnakeCase { fn check_mod( &mut self, cx: &LateContext<'_, '_>, _: &'tcx hir::Mod<'tcx>, _: Span, id: hir::HirId, ) { if id != hir::CRATE_HIR_ID { return; } let crate_ident = if let Some(name) = &cx.tcx.sess.opts.crate_name { Some(Ident::from_str(name)) } else { attr::find_by_name(&cx.tcx.hir().attrs(hir::CRATE_HIR_ID), sym::crate_name) .and_then(|attr| attr.meta()) .and_then(|meta| { meta.name_value_literal().and_then(|lit| { if let ast::LitKind::Str(name, ..) = lit.kind { // Discard the double quotes surrounding the literal. let sp = cx .sess() .source_map() .span_to_snippet(lit.span) .ok() .and_then(|snippet| { let left = snippet.find('"')?; let right = snippet.rfind('"').map(|pos| snippet.len() - pos)?; Some( lit.span .with_lo(lit.span.lo() + BytePos(left as u32 + 1)) .with_hi(lit.span.hi() - BytePos(right as u32)), ) }) .unwrap_or_else(|| lit.span); Some(Ident::new(name, sp)) } else { None } }) }) }; if let Some(ident) = &crate_ident { self.check_snake_case(cx, "crate", ident); } } fn check_generic_param(&mut self, cx: &LateContext<'_, '_>, param: &hir::GenericParam<'_>) { if let GenericParamKind::Lifetime { .. } = param.kind { self.check_snake_case(cx, "lifetime", ¶m.name.ident()); } } fn check_fn( &mut self, cx: &LateContext<'_, '_>, fk: FnKind<'_>, _: &hir::FnDecl<'_>, _: &hir::Body<'_>, _: Span, id: hir::HirId, ) { match &fk { FnKind::Method(ident, ..) => match method_context(cx, id) { MethodLateContext::PlainImpl => { self.check_snake_case(cx, "method", ident); } MethodLateContext::TraitAutoImpl => { self.check_snake_case(cx, "trait method", ident); } _ => (), }, FnKind::ItemFn(ident, _, header, _, attrs) => { // Skip foreign-ABI #[no_mangle] functions (Issue #31924) if header.abi != Abi::Rust && attr::contains_name(attrs, sym::no_mangle) { return; } self.check_snake_case(cx, "function", ident); } FnKind::Closure(_) => (), } } fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) { if let hir::ItemKind::Mod(_) = it.kind { self.check_snake_case(cx, "module", &it.ident); } } fn check_trait_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::TraitItem<'_>) { if let hir::TraitItemKind::Method(_, hir::TraitMethod::Required(pnames)) = item.kind { self.check_snake_case(cx, "trait method", &item.ident); for param_name in pnames { self.check_snake_case(cx, "variable", param_name); } } } fn check_pat(&mut self, cx: &LateContext<'_, '_>, p: &hir::Pat<'_>) { if let &PatKind::Binding(_, hid, ident, _) = &p.kind { if let hir::Node::Pat(parent_pat) = cx.tcx.hir().get(cx.tcx.hir().get_parent_node(hid)) { if let PatKind::Struct(_, field_pats, _) = &parent_pat.kind { for field in field_pats.iter() { if field.ident != ident { // Only check if a new name has been introduced, to avoid warning // on both the struct definition and this pattern. self.check_snake_case(cx, "variable", &ident); } } return; } } self.check_snake_case(cx, "variable", &ident); } } fn check_struct_def(&mut self, cx: &LateContext<'_, '_>, s: &hir::VariantData<'_>) { for sf in s.fields() { self.check_snake_case(cx, "structure field", &sf.ident); } } } declare_lint! { pub NON_UPPER_CASE_GLOBALS, Warn, "static constants should have uppercase identifiers" } declare_lint_pass!(NonUpperCaseGlobals => [NON_UPPER_CASE_GLOBALS]); impl NonUpperCaseGlobals { fn check_upper_case(cx: &LateContext<'_, '_>, sort: &str, ident: &Ident) { let name = &ident.name.as_str(); if name.chars().any(|c| c.is_lowercase()) { let uc = NonSnakeCase::to_snake_case(&name).to_uppercase(); let msg = format!("{} `{}` should have an upper case name", sort, name); cx.struct_span_lint(NON_UPPER_CASE_GLOBALS, ident.span, &msg) .span_suggestion( ident.span, "convert the identifier to upper case", uc, Applicability::MaybeIncorrect, ) .emit(); } } } impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonUpperCaseGlobals { fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Static(..) if !attr::contains_name(&it.attrs, sym::no_mangle) => { NonUpperCaseGlobals::check_upper_case(cx, "static variable", &it.ident); } hir::ItemKind::Const(..) => { NonUpperCaseGlobals::check_upper_case(cx, "constant", &it.ident); } _ => {} } } fn check_trait_item(&mut self, cx: &LateContext<'_, '_>, ti: &hir::TraitItem<'_>) { if let hir::TraitItemKind::Const(..) = ti.kind { NonUpperCaseGlobals::check_upper_case(cx, "associated constant", &ti.ident); } } fn check_impl_item(&mut self, cx: &LateContext<'_, '_>, ii: &hir::ImplItem<'_>) { if let hir::ImplItemKind::Const(..) = ii.kind { NonUpperCaseGlobals::check_upper_case(cx, "associated constant", &ii.ident); } } fn check_pat(&mut self, cx: &LateContext<'_, '_>, p: &hir::Pat<'_>) { // Lint for constants that look like binding identifiers (#7526) if let PatKind::Path(hir::QPath::Resolved(None, ref path)) = p.kind { if let Res::Def(DefKind::Const, _) = path.res { if path.segments.len() == 1 { NonUpperCaseGlobals::check_upper_case( cx, "constant in pattern", &path.segments[0].ident, ); } } } } fn check_generic_param(&mut self, cx: &LateContext<'_, '_>, param: &hir::GenericParam<'_>) { if let GenericParamKind::Const { .. } = param.kind { NonUpperCaseGlobals::check_upper_case(cx, "const parameter", ¶m.name.ident()); } } } #[cfg(test)] mod tests;