use crate::vec::{Idx, IndexVec}; use arrayvec::ArrayVec; use std::fmt; use std::iter; use std::marker::PhantomData; use std::mem; use std::slice; #[cfg(test)] mod tests; pub type Word = u64; pub const WORD_BYTES: usize = mem::size_of::(); pub const WORD_BITS: usize = WORD_BYTES * 8; /// A fixed-size bitset type with a dense representation. /// /// NOTE: Use [`GrowableBitSet`] if you need support for resizing after creation. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. All operations that involve two bitsets /// will panic if the bitsets have differing domain sizes. /// /// [`GrowableBitSet`]: struct.GrowableBitSet.html #[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)] pub struct BitSet { domain_size: usize, words: Vec, marker: PhantomData, } impl BitSet { /// Creates a new, empty bitset with a given `domain_size`. #[inline] pub fn new_empty(domain_size: usize) -> BitSet { let num_words = num_words(domain_size); BitSet { domain_size, words: vec![0; num_words], marker: PhantomData } } /// Creates a new, filled bitset with a given `domain_size`. #[inline] pub fn new_filled(domain_size: usize) -> BitSet { let num_words = num_words(domain_size); let mut result = BitSet { domain_size, words: vec![!0; num_words], marker: PhantomData }; result.clear_excess_bits(); result } /// Gets the domain size. pub fn domain_size(&self) -> usize { self.domain_size } /// Clear all elements. #[inline] pub fn clear(&mut self) { for word in &mut self.words { *word = 0; } } /// Clear excess bits in the final word. fn clear_excess_bits(&mut self) { let num_bits_in_final_word = self.domain_size % WORD_BITS; if num_bits_in_final_word > 0 { let mask = (1 << num_bits_in_final_word) - 1; let final_word_idx = self.words.len() - 1; self.words[final_word_idx] &= mask; } } /// Efficiently overwrite `self` with `other`. pub fn overwrite(&mut self, other: &BitSet) { assert!(self.domain_size == other.domain_size); self.words.clone_from_slice(&other.words); } /// Count the number of set bits in the set. pub fn count(&self) -> usize { self.words.iter().map(|e| e.count_ones() as usize).sum() } /// Returns `true` if `self` contains `elem`. #[inline] pub fn contains(&self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); (self.words[word_index] & mask) != 0 } /// Is `self` is a (non-strict) superset of `other`? #[inline] pub fn superset(&self, other: &BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b) } /// Is the set empty? #[inline] pub fn is_empty(&self) -> bool { self.words.iter().all(|a| *a == 0) } /// Insert `elem`. Returns whether the set has changed. #[inline] pub fn insert(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); let word_ref = &mut self.words[word_index]; let word = *word_ref; let new_word = word | mask; *word_ref = new_word; new_word != word } /// Sets all bits to true. pub fn insert_all(&mut self) { for word in &mut self.words { *word = !0; } self.clear_excess_bits(); } /// Returns `true` if the set has changed. #[inline] pub fn remove(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let (word_index, mask) = word_index_and_mask(elem); let word_ref = &mut self.words[word_index]; let word = *word_ref; let new_word = word & !mask; *word_ref = new_word; new_word != word } /// Sets `self = self | other` and returns `true` if `self` changed /// (i.e., if new bits were added). pub fn union(&mut self, other: &impl UnionIntoBitSet) -> bool { other.union_into(self) } /// Sets `self = self - other` and returns `true` if `self` changed. /// (i.e., if any bits were removed). pub fn subtract(&mut self, other: &impl SubtractFromBitSet) -> bool { other.subtract_from(self) } /// Sets `self = self & other` and return `true` if `self` changed. /// (i.e., if any bits were removed). pub fn intersect(&mut self, other: &BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut self.words, &other.words, |a, b| a & b) } /// Gets a slice of the underlying words. pub fn words(&self) -> &[Word] { &self.words } /// Iterates over the indices of set bits in a sorted order. #[inline] pub fn iter(&self) -> BitIter<'_, T> { BitIter::new(&self.words) } /// Duplicates the set as a hybrid set. pub fn to_hybrid(&self) -> HybridBitSet { // Note: we currently don't bother trying to make a Sparse set. HybridBitSet::Dense(self.to_owned()) } /// Set `self = self | other`. In contrast to `union` returns `true` if the set contains at /// least one bit that is not in `other` (i.e. `other` is not a superset of `self`). /// /// This is an optimization for union of a hybrid bitset. fn reverse_union_sparse(&mut self, sparse: &SparseBitSet) -> bool { assert!(sparse.domain_size == self.domain_size); self.clear_excess_bits(); let mut not_already = false; // Index of the current word not yet merged. let mut current_index = 0; // Mask of bits that came from the sparse set in the current word. let mut new_bit_mask = 0; for (word_index, mask) in sparse.iter().map(|x| word_index_and_mask(*x)) { // Next bit is in a word not inspected yet. if word_index > current_index { self.words[current_index] |= new_bit_mask; // Were there any bits in the old word that did not occur in the sparse set? not_already |= (self.words[current_index] ^ new_bit_mask) != 0; // Check all words we skipped for any set bit. not_already |= self.words[current_index + 1..word_index].iter().any(|&x| x != 0); // Update next word. current_index = word_index; // Reset bit mask, no bits have been merged yet. new_bit_mask = 0; } // Add bit and mark it as coming from the sparse set. // self.words[word_index] |= mask; new_bit_mask |= mask; } self.words[current_index] |= new_bit_mask; // Any bits in the last inspected word that were not in the sparse set? not_already |= (self.words[current_index] ^ new_bit_mask) != 0; // Any bits in the tail? Note `clear_excess_bits` before. not_already |= self.words[current_index + 1..].iter().any(|&x| x != 0); not_already } } /// This is implemented by all the bitsets so that BitSet::union() can be /// passed any type of bitset. pub trait UnionIntoBitSet { // Performs `other = other | self`. fn union_into(&self, other: &mut BitSet) -> bool; } /// This is implemented by all the bitsets so that BitSet::subtract() can be /// passed any type of bitset. pub trait SubtractFromBitSet { // Performs `other = other - self`. fn subtract_from(&self, other: &mut BitSet) -> bool; } impl UnionIntoBitSet for BitSet { fn union_into(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut other.words, &self.words, |a, b| a | b) } } impl SubtractFromBitSet for BitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); bitwise(&mut other.words, &self.words, |a, b| a & !b) } } impl fmt::Debug for BitSet { fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result { w.debug_list().entries(self.iter()).finish() } } impl ToString for BitSet { fn to_string(&self) -> String { let mut result = String::new(); let mut sep = '['; // Note: this is a little endian printout of bytes. // i tracks how many bits we have printed so far. let mut i = 0; for word in &self.words { let mut word = *word; for _ in 0..WORD_BYTES { // for each byte in `word`: let remain = self.domain_size - i; // If less than a byte remains, then mask just that many bits. let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF }; assert!(mask <= 0xFF); let byte = word & mask; result.push_str(&format!("{}{:02x}", sep, byte)); if remain <= 8 { break; } word >>= 8; i += 8; sep = '-'; } sep = '|'; } result.push(']'); result } } pub struct BitIter<'a, T: Idx> { /// A copy of the current word, but with any already-visited bits cleared. /// (This lets us use `trailing_zeros()` to find the next set bit.) When it /// is reduced to 0, we move onto the next word. word: Word, /// The offset (measured in bits) of the current word. offset: usize, /// Underlying iterator over the words. iter: slice::Iter<'a, Word>, marker: PhantomData, } impl<'a, T: Idx> BitIter<'a, T> { #[inline] fn new(words: &'a [Word]) -> BitIter<'a, T> { // We initialize `word` and `offset` to degenerate values. On the first // call to `next()` we will fall through to getting the first word from // `iter`, which sets `word` to the first word (if there is one) and // `offset` to 0. Doing it this way saves us from having to maintain // additional state about whether we have started. BitIter { word: 0, offset: usize::MAX - (WORD_BITS - 1), iter: words.iter(), marker: PhantomData, } } } impl<'a, T: Idx> Iterator for BitIter<'a, T> { type Item = T; fn next(&mut self) -> Option { loop { if self.word != 0 { // Get the position of the next set bit in the current word, // then clear the bit. let bit_pos = self.word.trailing_zeros() as usize; let bit = 1 << bit_pos; self.word ^= bit; return Some(T::new(bit_pos + self.offset)); } // Move onto the next word. `wrapping_add()` is needed to handle // the degenerate initial value given to `offset` in `new()`. let word = self.iter.next()?; self.word = *word; self.offset = self.offset.wrapping_add(WORD_BITS); } } } #[inline] fn bitwise(out_vec: &mut [Word], in_vec: &[Word], op: Op) -> bool where Op: Fn(Word, Word) -> Word, { assert_eq!(out_vec.len(), in_vec.len()); let mut changed = false; for (out_elem, in_elem) in out_vec.iter_mut().zip(in_vec.iter()) { let old_val = *out_elem; let new_val = op(old_val, *in_elem); *out_elem = new_val; changed |= old_val != new_val; } changed } const SPARSE_MAX: usize = 8; /// A fixed-size bitset type with a sparse representation and a maximum of /// `SPARSE_MAX` elements. The elements are stored as a sorted `ArrayVec` with /// no duplicates. /// /// This type is used by `HybridBitSet`; do not use directly. #[derive(Clone, Debug)] pub struct SparseBitSet { domain_size: usize, elems: ArrayVec<[T; SPARSE_MAX]>, } impl SparseBitSet { fn new_empty(domain_size: usize) -> Self { SparseBitSet { domain_size, elems: ArrayVec::new() } } fn len(&self) -> usize { self.elems.len() } fn is_empty(&self) -> bool { self.elems.len() == 0 } fn contains(&self, elem: T) -> bool { assert!(elem.index() < self.domain_size); self.elems.contains(&elem) } fn insert(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) { if self.elems[i] == elem { // `elem` is already in the set. false } else { // `elem` is smaller than one or more existing elements. self.elems.insert(i, elem); true } } else { // `elem` is larger than all existing elements. self.elems.push(elem); true }; assert!(self.len() <= SPARSE_MAX); changed } fn remove(&mut self, elem: T) -> bool { assert!(elem.index() < self.domain_size); if let Some(i) = self.elems.iter().position(|&e| e == elem) { self.elems.remove(i); true } else { false } } fn to_dense(&self) -> BitSet { let mut dense = BitSet::new_empty(self.domain_size); for elem in self.elems.iter() { dense.insert(*elem); } dense } fn iter(&self) -> slice::Iter<'_, T> { self.elems.iter() } } impl UnionIntoBitSet for SparseBitSet { fn union_into(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); let mut changed = false; for elem in self.iter() { changed |= other.insert(*elem); } changed } } impl SubtractFromBitSet for SparseBitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { assert_eq!(self.domain_size, other.domain_size); let mut changed = false; for elem in self.iter() { changed |= other.remove(*elem); } changed } } /// A fixed-size bitset type with a hybrid representation: sparse when there /// are up to a `SPARSE_MAX` elements in the set, but dense when there are more /// than `SPARSE_MAX`. /// /// This type is especially efficient for sets that typically have a small /// number of elements, but a large `domain_size`, and are cleared frequently. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. All operations that involve two bitsets /// will panic if the bitsets have differing domain sizes. #[derive(Clone, Debug)] pub enum HybridBitSet { Sparse(SparseBitSet), Dense(BitSet), } impl HybridBitSet { pub fn new_empty(domain_size: usize) -> Self { HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size)) } fn domain_size(&self) -> usize { match self { HybridBitSet::Sparse(sparse) => sparse.domain_size, HybridBitSet::Dense(dense) => dense.domain_size, } } pub fn clear(&mut self) { let domain_size = self.domain_size(); *self = HybridBitSet::new_empty(domain_size); } pub fn contains(&self, elem: T) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.contains(elem), HybridBitSet::Dense(dense) => dense.contains(elem), } } pub fn superset(&self, other: &HybridBitSet) -> bool { match (self, other) { (HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => { self_dense.superset(other_dense) } _ => { assert!(self.domain_size() == other.domain_size()); other.iter().all(|elem| self.contains(elem)) } } } pub fn is_empty(&self) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.is_empty(), HybridBitSet::Dense(dense) => dense.is_empty(), } } pub fn insert(&mut self, elem: T) -> bool { // No need to check `elem` against `self.domain_size` here because all // the match cases check it, one way or another. match self { HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => { // The set is sparse and has space for `elem`. sparse.insert(elem) } HybridBitSet::Sparse(sparse) if sparse.contains(elem) => { // The set is sparse and does not have space for `elem`, but // that doesn't matter because `elem` is already present. false } HybridBitSet::Sparse(sparse) => { // The set is sparse and full. Convert to a dense set. let mut dense = sparse.to_dense(); let changed = dense.insert(elem); assert!(changed); *self = HybridBitSet::Dense(dense); changed } HybridBitSet::Dense(dense) => dense.insert(elem), } } pub fn insert_all(&mut self) { let domain_size = self.domain_size(); match self { HybridBitSet::Sparse(_) => { *self = HybridBitSet::Dense(BitSet::new_filled(domain_size)); } HybridBitSet::Dense(dense) => dense.insert_all(), } } pub fn remove(&mut self, elem: T) -> bool { // Note: we currently don't bother going from Dense back to Sparse. match self { HybridBitSet::Sparse(sparse) => sparse.remove(elem), HybridBitSet::Dense(dense) => dense.remove(elem), } } pub fn union(&mut self, other: &HybridBitSet) -> bool { match self { HybridBitSet::Sparse(self_sparse) => { match other { HybridBitSet::Sparse(other_sparse) => { // Both sets are sparse. Add the elements in // `other_sparse` to `self` one at a time. This // may or may not cause `self` to be densified. assert_eq!(self.domain_size(), other.domain_size()); let mut changed = false; for elem in other_sparse.iter() { changed |= self.insert(*elem); } changed } HybridBitSet::Dense(other_dense) => { // `self` is sparse and `other` is dense. To // merge them, we have two available strategies: // * Densify `self` then merge other // * Clone other then integrate bits from `self` // The second strategy requires dedicated method // since the usual `union` returns the wrong // result. In the dedicated case the computation // is slightly faster if the bits of the sparse // bitset map to only few words of the dense // representation, i.e. indices are near each // other. // // Benchmarking seems to suggest that the second // option is worth it. let mut new_dense = other_dense.clone(); let changed = new_dense.reverse_union_sparse(self_sparse); *self = HybridBitSet::Dense(new_dense); changed } } } HybridBitSet::Dense(self_dense) => self_dense.union(other), } } /// Converts to a dense set, consuming itself in the process. pub fn to_dense(self) -> BitSet { match self { HybridBitSet::Sparse(sparse) => sparse.to_dense(), HybridBitSet::Dense(dense) => dense, } } pub fn iter(&self) -> HybridIter<'_, T> { match self { HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()), HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()), } } } impl UnionIntoBitSet for HybridBitSet { fn union_into(&self, other: &mut BitSet) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.union_into(other), HybridBitSet::Dense(dense) => dense.union_into(other), } } } impl SubtractFromBitSet for HybridBitSet { fn subtract_from(&self, other: &mut BitSet) -> bool { match self { HybridBitSet::Sparse(sparse) => sparse.subtract_from(other), HybridBitSet::Dense(dense) => dense.subtract_from(other), } } } pub enum HybridIter<'a, T: Idx> { Sparse(slice::Iter<'a, T>), Dense(BitIter<'a, T>), } impl<'a, T: Idx> Iterator for HybridIter<'a, T> { type Item = T; fn next(&mut self) -> Option { match self { HybridIter::Sparse(sparse) => sparse.next().copied(), HybridIter::Dense(dense) => dense.next(), } } } /// A resizable bitset type with a dense representation. /// /// `T` is an index type, typically a newtyped `usize` wrapper, but it can also /// just be `usize`. /// /// All operations that involve an element will panic if the element is equal /// to or greater than the domain size. #[derive(Clone, Debug, PartialEq)] pub struct GrowableBitSet { bit_set: BitSet, } impl GrowableBitSet { /// Ensure that the set can hold at least `min_domain_size` elements. pub fn ensure(&mut self, min_domain_size: usize) { if self.bit_set.domain_size < min_domain_size { self.bit_set.domain_size = min_domain_size; } let min_num_words = num_words(min_domain_size); if self.bit_set.words.len() < min_num_words { self.bit_set.words.resize(min_num_words, 0) } } pub fn new_empty() -> GrowableBitSet { GrowableBitSet { bit_set: BitSet::new_empty(0) } } pub fn with_capacity(capacity: usize) -> GrowableBitSet { GrowableBitSet { bit_set: BitSet::new_empty(capacity) } } /// Returns `true` if the set has changed. #[inline] pub fn insert(&mut self, elem: T) -> bool { self.ensure(elem.index() + 1); self.bit_set.insert(elem) } #[inline] pub fn contains(&self, elem: T) -> bool { let (word_index, mask) = word_index_and_mask(elem); if let Some(word) = self.bit_set.words.get(word_index) { (word & mask) != 0 } else { false } } } /// A fixed-size 2D bit matrix type with a dense representation. /// /// `R` and `C` are index types used to identify rows and columns respectively; /// typically newtyped `usize` wrappers, but they can also just be `usize`. /// /// All operations that involve a row and/or column index will panic if the /// index exceeds the relevant bound. #[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)] pub struct BitMatrix { num_rows: usize, num_columns: usize, words: Vec, marker: PhantomData<(R, C)>, } impl BitMatrix { /// Creates a new `rows x columns` matrix, initially empty. pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix { // For every element, we need one bit for every other // element. Round up to an even number of words. let words_per_row = num_words(num_columns); BitMatrix { num_rows, num_columns, words: vec![0; num_rows * words_per_row], marker: PhantomData, } } /// Creates a new matrix, with `row` used as the value for every row. pub fn from_row_n(row: &BitSet, num_rows: usize) -> BitMatrix { let num_columns = row.domain_size(); let words_per_row = num_words(num_columns); assert_eq!(words_per_row, row.words().len()); BitMatrix { num_rows, num_columns, words: iter::repeat(row.words()).take(num_rows).flatten().cloned().collect(), marker: PhantomData, } } pub fn rows(&self) -> impl Iterator { (0..self.num_rows).map(R::new) } /// The range of bits for a given row. fn range(&self, row: R) -> (usize, usize) { let words_per_row = num_words(self.num_columns); let start = row.index() * words_per_row; (start, start + words_per_row) } /// Sets the cell at `(row, column)` to true. Put another way, insert /// `column` to the bitset for `row`. /// /// Returns `true` if this changed the matrix. pub fn insert(&mut self, row: R, column: C) -> bool { assert!(row.index() < self.num_rows && column.index() < self.num_columns); let (start, _) = self.range(row); let (word_index, mask) = word_index_and_mask(column); let words = &mut self.words[..]; let word = words[start + word_index]; let new_word = word | mask; words[start + word_index] = new_word; word != new_word } /// Do the bits from `row` contain `column`? Put another way, is /// the matrix cell at `(row, column)` true? Put yet another way, /// if the matrix represents (transitive) reachability, can /// `row` reach `column`? pub fn contains(&self, row: R, column: C) -> bool { assert!(row.index() < self.num_rows && column.index() < self.num_columns); let (start, _) = self.range(row); let (word_index, mask) = word_index_and_mask(column); (self.words[start + word_index] & mask) != 0 } /// Returns those indices that are true in rows `a` and `b`. This /// is an O(n) operation where `n` is the number of elements /// (somewhat independent from the actual size of the /// intersection, in particular). pub fn intersect_rows(&self, row1: R, row2: R) -> Vec { assert!(row1.index() < self.num_rows && row2.index() < self.num_rows); let (row1_start, row1_end) = self.range(row1); let (row2_start, row2_end) = self.range(row2); let mut result = Vec::with_capacity(self.num_columns); for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() { let mut v = self.words[i] & self.words[j]; for bit in 0..WORD_BITS { if v == 0 { break; } if v & 0x1 != 0 { result.push(C::new(base * WORD_BITS + bit)); } v >>= 1; } } result } /// Adds the bits from row `read` to the bits from row `write`, and /// returns `true` if anything changed. /// /// This is used when computing transitive reachability because if /// you have an edge `write -> read`, because in that case /// `write` can reach everything that `read` can (and /// potentially more). pub fn union_rows(&mut self, read: R, write: R) -> bool { assert!(read.index() < self.num_rows && write.index() < self.num_rows); let (read_start, read_end) = self.range(read); let (write_start, write_end) = self.range(write); let words = &mut self.words[..]; let mut changed = false; for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) { let word = words[write_index]; let new_word = word | words[read_index]; words[write_index] = new_word; changed |= word != new_word; } changed } /// Adds the bits from `with` to the bits from row `write`, and /// returns `true` if anything changed. pub fn union_row_with(&mut self, with: &BitSet, write: R) -> bool { assert!(write.index() < self.num_rows); assert_eq!(with.domain_size(), self.num_columns); let (write_start, write_end) = self.range(write); let mut changed = false; for (read_index, write_index) in (0..with.words().len()).zip(write_start..write_end) { let word = self.words[write_index]; let new_word = word | with.words()[read_index]; self.words[write_index] = new_word; changed |= word != new_word; } changed } /// Sets every cell in `row` to true. pub fn insert_all_into_row(&mut self, row: R) { assert!(row.index() < self.num_rows); let (start, end) = self.range(row); let words = &mut self.words[..]; for index in start..end { words[index] = !0; } self.clear_excess_bits(row); } /// Clear excess bits in the final word of the row. fn clear_excess_bits(&mut self, row: R) { let num_bits_in_final_word = self.num_columns % WORD_BITS; if num_bits_in_final_word > 0 { let mask = (1 << num_bits_in_final_word) - 1; let (_, end) = self.range(row); let final_word_idx = end - 1; self.words[final_word_idx] &= mask; } } /// Gets a slice of the underlying words. pub fn words(&self) -> &[Word] { &self.words } /// Iterates through all the columns set to true in a given row of /// the matrix. pub fn iter(&self, row: R) -> BitIter<'_, C> { assert!(row.index() < self.num_rows); let (start, end) = self.range(row); BitIter::new(&self.words[start..end]) } /// Returns the number of elements in `row`. pub fn count(&self, row: R) -> usize { let (start, end) = self.range(row); self.words[start..end].iter().map(|e| e.count_ones() as usize).sum() } } impl fmt::Debug for BitMatrix { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { /// Forces its contents to print in regular mode instead of alternate mode. struct OneLinePrinter(T); impl fmt::Debug for OneLinePrinter { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { write!(fmt, "{:?}", self.0) } } write!(fmt, "BitMatrix({}x{}) ", self.num_rows, self.num_columns)?; let items = self.rows().flat_map(|r| self.iter(r).map(move |c| (r, c))); fmt.debug_set().entries(items.map(OneLinePrinter)).finish() } } /// A fixed-column-size, variable-row-size 2D bit matrix with a moderately /// sparse representation. /// /// Initially, every row has no explicit representation. If any bit within a /// row is set, the entire row is instantiated as `Some()`. /// Furthermore, any previously uninstantiated rows prior to it will be /// instantiated as `None`. Those prior rows may themselves become fully /// instantiated later on if any of their bits are set. /// /// `R` and `C` are index types used to identify rows and columns respectively; /// typically newtyped `usize` wrappers, but they can also just be `usize`. #[derive(Clone, Debug)] pub struct SparseBitMatrix where R: Idx, C: Idx, { num_columns: usize, rows: IndexVec>>, } impl SparseBitMatrix { /// Creates a new empty sparse bit matrix with no rows or columns. pub fn new(num_columns: usize) -> Self { Self { num_columns, rows: IndexVec::new() } } fn ensure_row(&mut self, row: R) -> &mut HybridBitSet { // Instantiate any missing rows up to and including row `row` with an // empty HybridBitSet. self.rows.ensure_contains_elem(row, || None); // Then replace row `row` with a full HybridBitSet if necessary. let num_columns = self.num_columns; self.rows[row].get_or_insert_with(|| HybridBitSet::new_empty(num_columns)) } /// Sets the cell at `(row, column)` to true. Put another way, insert /// `column` to the bitset for `row`. /// /// Returns `true` if this changed the matrix. pub fn insert(&mut self, row: R, column: C) -> bool { self.ensure_row(row).insert(column) } /// Do the bits from `row` contain `column`? Put another way, is /// the matrix cell at `(row, column)` true? Put yet another way, /// if the matrix represents (transitive) reachability, can /// `row` reach `column`? pub fn contains(&self, row: R, column: C) -> bool { self.row(row).map_or(false, |r| r.contains(column)) } /// Adds the bits from row `read` to the bits from row `write`, and /// returns `true` if anything changed. /// /// This is used when computing transitive reachability because if /// you have an edge `write -> read`, because in that case /// `write` can reach everything that `read` can (and /// potentially more). pub fn union_rows(&mut self, read: R, write: R) -> bool { if read == write || self.row(read).is_none() { return false; } self.ensure_row(write); if let (Some(read_row), Some(write_row)) = self.rows.pick2_mut(read, write) { write_row.union(read_row) } else { unreachable!() } } /// Union a row, `from`, into the `into` row. pub fn union_into_row(&mut self, into: R, from: &HybridBitSet) -> bool { self.ensure_row(into).union(from) } /// Insert all bits in the given row. pub fn insert_all_into_row(&mut self, row: R) { self.ensure_row(row).insert_all(); } pub fn rows(&self) -> impl Iterator { self.rows.indices() } /// Iterates through all the columns set to true in a given row of /// the matrix. pub fn iter<'a>(&'a self, row: R) -> impl Iterator + 'a { self.row(row).into_iter().flat_map(|r| r.iter()) } pub fn row(&self, row: R) -> Option<&HybridBitSet> { if let Some(Some(row)) = self.rows.get(row) { Some(row) } else { None } } } #[inline] fn num_words(domain_size: T) -> usize { (domain_size.index() + WORD_BITS - 1) / WORD_BITS } #[inline] fn word_index_and_mask(elem: T) -> (usize, Word) { let elem = elem.index(); let word_index = elem / WORD_BITS; let mask = 1 << (elem % WORD_BITS); (word_index, mask) }