use crate::base; use crate::common::CodegenCx; use crate::debuginfo; use crate::llvm::{self, True}; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; use cstr::cstr; use libc::c_uint; use rustc_codegen_ssa::traits::*; use rustc_hir::def_id::DefId; use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs}; use rustc_middle::mir::interpret::{ read_target_uint, Allocation, ErrorHandled, GlobalAlloc, Pointer, }; use rustc_middle::mir::mono::MonoItem; use rustc_middle::ty::{self, Instance, Ty}; use rustc_middle::{bug, span_bug}; use rustc_target::abi::{AddressSpace, Align, HasDataLayout, LayoutOf, Primitive, Scalar, Size}; use tracing::debug; pub fn const_alloc_to_llvm(cx: &CodegenCx<'ll, '_>, alloc: &Allocation) -> &'ll Value { let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1); let dl = cx.data_layout(); let pointer_size = dl.pointer_size.bytes() as usize; let mut next_offset = 0; for &(offset, ((), alloc_id)) in alloc.relocations().iter() { let offset = offset.bytes(); assert_eq!(offset as usize as u64, offset); let offset = offset as usize; if offset > next_offset { // This `inspect` is okay since we have checked that it is not within a relocation, it // is within the bounds of the allocation, and it doesn't affect interpreter execution // (we inspect the result after interpreter execution). Any undef byte is replaced with // some arbitrary byte value. // // FIXME: relay undef bytes to codegen as undef const bytes let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset); llvals.push(cx.const_bytes(bytes)); } let ptr_offset = read_target_uint( dl.endian, // This `inspect` is okay since it is within the bounds of the allocation, it doesn't // affect interpreter execution (we inspect the result after interpreter execution), // and we properly interpret the relocation as a relocation pointer offset. alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)), ) .expect("const_alloc_to_llvm: could not read relocation pointer") as u64; let address_space = match cx.tcx.global_alloc(alloc_id) { GlobalAlloc::Function(..) => cx.data_layout().instruction_address_space, GlobalAlloc::Static(..) | GlobalAlloc::Memory(..) => AddressSpace::DATA, }; llvals.push(cx.scalar_to_backend( Pointer::new(alloc_id, Size::from_bytes(ptr_offset)).into(), &Scalar { value: Primitive::Pointer, valid_range: 0..=!0 }, cx.type_i8p_ext(address_space), )); next_offset = offset + pointer_size; } if alloc.len() >= next_offset { let range = next_offset..alloc.len(); // This `inspect` is okay since we have check that it is after all relocations, it is // within the bounds of the allocation, and it doesn't affect interpreter execution (we // inspect the result after interpreter execution). Any undef byte is replaced with some // arbitrary byte value. // // FIXME: relay undef bytes to codegen as undef const bytes let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range); llvals.push(cx.const_bytes(bytes)); } cx.const_struct(&llvals, true) } pub fn codegen_static_initializer( cx: &CodegenCx<'ll, 'tcx>, def_id: DefId, ) -> Result<(&'ll Value, &'tcx Allocation), ErrorHandled> { let alloc = cx.tcx.eval_static_initializer(def_id)?; Ok((const_alloc_to_llvm(cx, alloc), alloc)) } fn set_global_alignment(cx: &CodegenCx<'ll, '_>, gv: &'ll Value, mut align: Align) { // The target may require greater alignment for globals than the type does. // Note: GCC and Clang also allow `__attribute__((aligned))` on variables, // which can force it to be smaller. Rust doesn't support this yet. if let Some(min) = cx.sess().target.min_global_align { match Align::from_bits(min) { Ok(min) => align = align.max(min), Err(err) => { cx.sess().err(&format!("invalid minimum global alignment: {}", err)); } } } unsafe { llvm::LLVMSetAlignment(gv, align.bytes() as u32); } } fn check_and_apply_linkage( cx: &CodegenCx<'ll, 'tcx>, attrs: &CodegenFnAttrs, ty: Ty<'tcx>, sym: &str, span_def_id: DefId, ) -> &'ll Value { let llty = cx.layout_of(ty).llvm_type(cx); if let Some(linkage) = attrs.linkage { debug!("get_static: sym={} linkage={:?}", sym, linkage); // If this is a static with a linkage specified, then we need to handle // it a little specially. The typesystem prevents things like &T and // extern "C" fn() from being non-null, so we can't just declare a // static and call it a day. Some linkages (like weak) will make it such // that the static actually has a null value. let llty2 = if let ty::RawPtr(ref mt) = ty.kind() { cx.layout_of(mt.ty).llvm_type(cx) } else { cx.sess().span_fatal( cx.tcx.def_span(span_def_id), "must have type `*const T` or `*mut T` due to `#[linkage]` attribute", ) }; unsafe { // Declare a symbol `foo` with the desired linkage. let g1 = cx.declare_global(&sym, llty2); llvm::LLVMRustSetLinkage(g1, base::linkage_to_llvm(linkage)); // Declare an internal global `extern_with_linkage_foo` which // is initialized with the address of `foo`. If `foo` is // discarded during linking (for example, if `foo` has weak // linkage and there are no definitions), then // `extern_with_linkage_foo` will instead be initialized to // zero. let mut real_name = "_rust_extern_with_linkage_".to_string(); real_name.push_str(&sym); let g2 = cx.define_global(&real_name, llty).unwrap_or_else(|| { cx.sess().span_fatal( cx.tcx.def_span(span_def_id), &format!("symbol `{}` is already defined", &sym), ) }); llvm::LLVMRustSetLinkage(g2, llvm::Linkage::InternalLinkage); llvm::LLVMSetInitializer(g2, g1); g2 } } else { // Generate an external declaration. // FIXME(nagisa): investigate whether it can be changed into define_global cx.declare_global(&sym, llty) } } pub fn ptrcast(val: &'ll Value, ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMConstPointerCast(val, ty) } } impl CodegenCx<'ll, 'tcx> { crate fn const_bitcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMConstBitCast(val, ty) } } crate fn static_addr_of_mut( &self, cv: &'ll Value, align: Align, kind: Option<&str>, ) -> &'ll Value { unsafe { let gv = match kind { Some(kind) if !self.tcx.sess.fewer_names() => { let name = self.generate_local_symbol_name(kind); let gv = self.define_global(&name[..], self.val_ty(cv)).unwrap_or_else(|| { bug!("symbol `{}` is already defined", name); }); llvm::LLVMRustSetLinkage(gv, llvm::Linkage::PrivateLinkage); gv } _ => self.define_private_global(self.val_ty(cv)), }; llvm::LLVMSetInitializer(gv, cv); set_global_alignment(&self, gv, align); llvm::SetUnnamedAddress(gv, llvm::UnnamedAddr::Global); gv } } crate fn get_static(&self, def_id: DefId) -> &'ll Value { let instance = Instance::mono(self.tcx, def_id); if let Some(&g) = self.instances.borrow().get(&instance) { return g; } let defined_in_current_codegen_unit = self.codegen_unit.items().contains_key(&MonoItem::Static(def_id)); assert!( !defined_in_current_codegen_unit, "consts::get_static() should always hit the cache for \ statics defined in the same CGU, but did not for `{:?}`", def_id ); let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all()); let sym = self.tcx.symbol_name(instance).name; let fn_attrs = self.tcx.codegen_fn_attrs(def_id); debug!("get_static: sym={} instance={:?} fn_attrs={:?}", sym, instance, fn_attrs); let g = if def_id.is_local() && !self.tcx.is_foreign_item(def_id) { let llty = self.layout_of(ty).llvm_type(self); if let Some(g) = self.get_declared_value(sym) { if self.val_ty(g) != self.type_ptr_to(llty) { span_bug!(self.tcx.def_span(def_id), "Conflicting types for static"); } } let g = self.declare_global(sym, llty); if !self.tcx.is_reachable_non_generic(def_id) { unsafe { llvm::LLVMRustSetVisibility(g, llvm::Visibility::Hidden); } } g } else { check_and_apply_linkage(&self, &fn_attrs, ty, sym, def_id) }; // Thread-local statics in some other crate need to *always* be linked // against in a thread-local fashion, so we need to be sure to apply the // thread-local attribute locally if it was present remotely. If we // don't do this then linker errors can be generated where the linker // complains that one object files has a thread local version of the // symbol and another one doesn't. if fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) { llvm::set_thread_local_mode(g, self.tls_model); } if !def_id.is_local() { let needs_dll_storage_attr = self.use_dll_storage_attrs && !self.tcx.is_foreign_item(def_id) && // ThinLTO can't handle this workaround in all cases, so we don't // emit the attrs. Instead we make them unnecessary by disallowing // dynamic linking when linker plugin based LTO is enabled. !self.tcx.sess.opts.cg.linker_plugin_lto.enabled(); // If this assertion triggers, there's something wrong with commandline // argument validation. debug_assert!( !(self.tcx.sess.opts.cg.linker_plugin_lto.enabled() && self.tcx.sess.target.is_like_windows && self.tcx.sess.opts.cg.prefer_dynamic) ); if needs_dll_storage_attr { // This item is external but not foreign, i.e., it originates from an external Rust // crate. Since we don't know whether this crate will be linked dynamically or // statically in the final application, we always mark such symbols as 'dllimport'. // If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs // to make things work. // // However, in some scenarios we defer emission of statics to downstream // crates, so there are cases where a static with an upstream DefId // is actually present in the current crate. We can find out via the // is_codegened_item query. if !self.tcx.is_codegened_item(def_id) { unsafe { llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport); } } } } if self.use_dll_storage_attrs && self.tcx.is_dllimport_foreign_item(def_id) { // For foreign (native) libs we know the exact storage type to use. unsafe { llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport); } } self.instances.borrow_mut().insert(instance, g); g } } impl StaticMethods for CodegenCx<'ll, 'tcx> { fn static_addr_of(&self, cv: &'ll Value, align: Align, kind: Option<&str>) -> &'ll Value { if let Some(&gv) = self.const_globals.borrow().get(&cv) { unsafe { // Upgrade the alignment in cases where the same constant is used with different // alignment requirements let llalign = align.bytes() as u32; if llalign > llvm::LLVMGetAlignment(gv) { llvm::LLVMSetAlignment(gv, llalign); } } return gv; } let gv = self.static_addr_of_mut(cv, align, kind); unsafe { llvm::LLVMSetGlobalConstant(gv, True); } self.const_globals.borrow_mut().insert(cv, gv); gv } fn codegen_static(&self, def_id: DefId, is_mutable: bool) { unsafe { let attrs = self.tcx.codegen_fn_attrs(def_id); let (v, alloc) = match codegen_static_initializer(&self, def_id) { Ok(v) => v, // Error has already been reported Err(_) => return, }; let g = self.get_static(def_id); // boolean SSA values are i1, but they have to be stored in i8 slots, // otherwise some LLVM optimization passes don't work as expected let mut val_llty = self.val_ty(v); let v = if val_llty == self.type_i1() { val_llty = self.type_i8(); llvm::LLVMConstZExt(v, val_llty) } else { v }; let instance = Instance::mono(self.tcx, def_id); let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all()); let llty = self.layout_of(ty).llvm_type(self); let g = if val_llty == llty { g } else { // If we created the global with the wrong type, // correct the type. let name = llvm::get_value_name(g).to_vec(); llvm::set_value_name(g, b""); let linkage = llvm::LLVMRustGetLinkage(g); let visibility = llvm::LLVMRustGetVisibility(g); let new_g = llvm::LLVMRustGetOrInsertGlobal( self.llmod, name.as_ptr().cast(), name.len(), val_llty, ); llvm::LLVMRustSetLinkage(new_g, linkage); llvm::LLVMRustSetVisibility(new_g, visibility); // To avoid breaking any invariants, we leave around the old // global for the moment; we'll replace all references to it // with the new global later. (See base::codegen_backend.) self.statics_to_rauw.borrow_mut().push((g, new_g)); new_g }; set_global_alignment(&self, g, self.align_of(ty)); llvm::LLVMSetInitializer(g, v); // As an optimization, all shared statics which do not have interior // mutability are placed into read-only memory. if !is_mutable && self.type_is_freeze(ty) { llvm::LLVMSetGlobalConstant(g, llvm::True); } debuginfo::create_global_var_metadata(&self, def_id, g); if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) { llvm::set_thread_local_mode(g, self.tls_model); // Do not allow LLVM to change the alignment of a TLS on macOS. // // By default a global's alignment can be freely increased. // This allows LLVM to generate more performant instructions // e.g., using load-aligned into a SIMD register. // // However, on macOS 10.10 or below, the dynamic linker does not // respect any alignment given on the TLS (radar 24221680). // This will violate the alignment assumption, and causing segfault at runtime. // // This bug is very easy to trigger. In `println!` and `panic!`, // the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS, // which the values would be `mem::replace`d on initialization. // The implementation of `mem::replace` will use SIMD // whenever the size is 32 bytes or higher. LLVM notices SIMD is used // and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary, // which macOS's dyld disregarded and causing crashes // (see issues #51794, #51758, #50867, #48866 and #44056). // // To workaround the bug, we trick LLVM into not increasing // the global's alignment by explicitly assigning a section to it // (equivalent to automatically generating a `#[link_section]` attribute). // See the comment in the `GlobalValue::canIncreaseAlignment()` function // of `lib/IR/Globals.cpp` for why this works. // // When the alignment is not increased, the optimized `mem::replace` // will use load-unaligned instructions instead, and thus avoiding the crash. // // We could remove this hack whenever we decide to drop macOS 10.10 support. if self.tcx.sess.target.is_like_osx { // The `inspect` method is okay here because we checked relocations, and // because we are doing this access to inspect the final interpreter state // (not as part of the interpreter execution). // // FIXME: This check requires that the (arbitrary) value of undefined bytes // happens to be zero. Instead, we should only check the value of defined bytes // and set all undefined bytes to zero if this allocation is headed for the // BSS. let all_bytes_are_zero = alloc.relocations().is_empty() && alloc .inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len()) .iter() .all(|&byte| byte == 0); let sect_name = if all_bytes_are_zero { cstr!("__DATA,__thread_bss") } else { cstr!("__DATA,__thread_data") }; llvm::LLVMSetSection(g, sect_name.as_ptr()); } } // Wasm statics with custom link sections get special treatment as they // go into custom sections of the wasm executable. if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") { if let Some(section) = attrs.link_section { let section = llvm::LLVMMDStringInContext( self.llcx, section.as_str().as_ptr().cast(), section.as_str().len() as c_uint, ); assert!(alloc.relocations().is_empty()); // The `inspect` method is okay here because we checked relocations, and // because we are doing this access to inspect the final interpreter state (not // as part of the interpreter execution). let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len()); let alloc = llvm::LLVMMDStringInContext( self.llcx, bytes.as_ptr().cast(), bytes.len() as c_uint, ); let data = [section, alloc]; let meta = llvm::LLVMMDNodeInContext(self.llcx, data.as_ptr(), 2); llvm::LLVMAddNamedMetadataOperand( self.llmod, "wasm.custom_sections\0".as_ptr().cast(), meta, ); } } else { base::set_link_section(g, &attrs); } if attrs.flags.contains(CodegenFnAttrFlags::USED) { self.add_used_global(g); } } } /// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*. fn add_used_global(&self, global: &'ll Value) { let cast = unsafe { llvm::LLVMConstPointerCast(global, self.type_i8p()) }; self.used_statics.borrow_mut().push(cast); } }